-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEnv_gym.py
653 lines (530 loc) · 28.8 KB
/
Env_gym.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
import gymnasium as gym
import numpy as np
from gymnasium import spaces
from utils import prepare_data_for_unified
from Rewards_config import RewardTracker, reward_shaping, ddpg_reward_fun, ppo_optimization_reward
import random
def validate_layers_thicknesses(layers, thicknesses):
if len(layers) != len(thicknesses):
raise ValueError("Mismatch between layers and thicknesses lengths.")
class PPOTMMEnv(gym.Env):
def __init__(self, simulator, target, available_materials, target_wavelength_ranges, min_layers, max_layers,
target_reflection=None, agent_template=None, min_actions_per_episode=100, reward_tracker=None,
stack_mode='periodic', desired_absorption=None, narrowbands= None,
upper = None, lower = None,metal_lower=None,metal_upper=None):
super(PPOTMMEnv, self).__init__()
self.simulator = simulator
self.target = target
self.available_materials = available_materials
self.target_wavelength_ranges = target_wavelength_ranges
self.target_reflection = None
self.materials = [material_info['material'] for material_info in available_materials]
self.materials_idx = {material: idx for idx, material in enumerate(self.materials)}
self.material_types = {material_info['material']: material_info['type'] for material_info in
available_materials}
self.num_materials = len(self.materials)
self.current_merit = 0
self.agent_template = agent_template
self.min_layers = min_layers
self.max_layers = max_layers
self.best_design = None
self.reward_tracker = reward_tracker or RewardTracker()
self.stack_mode = stack_mode
self.desired_absorption = desired_absorption
self.min_actions_per_episode = min_actions_per_episode
self.current_step_count = 0
self.narrowbands = narrowbands
self.upper = upper
self.lower = lower
self.metal_lower = metal_lower
self.metal_upper = metal_upper
if stack_mode == 'periodic':
self.action_space = spaces.Discrete(self.num_materials + 2) # Add, Modify, Done
print('Periodic Mode')
else:
self.action_space = spaces.Discrete(self.num_materials + 3) # Add, Modify, Remove, Done
print('Random Mode')
self.observation_space = spaces.Box(
low=0,
high=1,
shape=(self.max_layers * 2,),
dtype=np.float32
)
self.reset()
def step(self, action):
action_type, layer_idx = action
if action_type < 0 or action_type >= self.num_materials + (3 if self.stack_mode == 'random' else 2):
raise ValueError("Invalid action: action_type out of range.")
if len(self.layers) < self.min_layers and action_type >= self.num_materials:
action_type = np.random.randint(0, self.num_materials) # Force an add action
if len(self.layers) >= self.max_layers:
if action_type < self.num_materials:
action_type = self.num_materials + 1 # Force a modify action
if action_type == self.num_materials and self.current_step_count < self.min_actions_per_episode:
if len(self.layers) >= self.max_layers:
action_type = self.num_materials + 1 # Force a modify action if max layers reached
else:
action_type = np.random.randint(0, self.num_materials) # Force a random action
if action_type == self.num_materials: # Done action
print("Done action chosen. Ending episode.")
self.current_step_count = 0
return self._get_obs(), self.current_merit, True, {}
elif action_type == self.num_materials + 1: # Modify action
if len(self.layers) == 0:
raise ValueError("No layers to modify.")
layers_to_modify = np.random.randint(1, 9)
for _ in range(layers_to_modify):
layer_to_modify = np.random.randint(len(self.layers))
material = self.layers[layer_to_modify]
thickness_range = self.get_thickness_range(material)
new_thickness = np.random.randint(*thickness_range)
self.thicknesses[layer_to_modify] = new_thickness
print(f"Modified layer {layer_to_modify} to thickness {new_thickness}")
elif self.stack_mode == 'random' and action_type == self.num_materials + 2: # Remove action
if len(self.layers) <= self.min_layers:
print("Skipping invalid action: Cannot remove layer below minimum layers.")
return self._get_obs(), 0, False, {}
layer_to_remove = layer_idx if layer_idx < len(self.layers) else -1
self.layers.pop(layer_to_remove)
self.thicknesses.pop(layer_to_remove)
print("Removed layer at index", layer_idx)
else: # Add action
if action_type >= self.num_materials:
raise ValueError("Invalid action: action_type out of range.")
# Check if the last layer is Ag and add Ge instead
if self.layers and self.layers[-1] == 'Ag':
layer = 'Ge'
print("Adding Ge after Ag")
else:
if self.stack_mode == 'periodic':
if len(self.layers) > 0:
last_layer = self.layers[-1]
last_material_index = self.materials.index(last_layer)
next_material_index = (last_material_index + 1) % self.num_materials
layer = self.materials[next_material_index]
else:
layer = self.materials[0]
else: # Random stacking
layer = random.choice(self.materials)
thickness_range = self.get_thickness_range(layer)
new_thickness = np.random.randint(*thickness_range)
if len(self.layers) < self.max_layers:
self.layers.append(layer)
self.thicknesses.append(new_thickness)
print(f"Added layer {layer} with thickness {new_thickness}")
# Save previous state
self.previous_layers = self.layers.copy()
self.previous_thicknesses = self.thicknesses.copy()
validate_layers_thicknesses(self.layers, self.thicknesses)
_, _, A = self.simulator.spectrum(self.layers, self.thicknesses)
reward = reward_shaping(_, _, A, self.simulator.wavelength, self.target_wavelength_ranges,
self.desired_absorption, self.reward_tracker, self.target_reflection, self.narrowbands)
self.current_merit = reward
print(f"Current layers = {self.layers}")
print(f"Current thicknesses = {self.thicknesses}")
self.current_step_count += 1
return self._get_obs(), reward, False, {}
def get_thickness_range(self, material):
if self.material_types[material] == 'metal':
return self.metal_lower, self.metal_upper
elif self.material_types[material] == 'glue':
return 4, 10
elif self.material_types[material] == 'dielectric' or self.material_types[material] == 'oxide':
return self.lower, self.upper
else:
return self.lower, self.upper
def reset(self):
self.layers = []
self.thicknesses = []
initial_material_index = 0
for i in range(self.min_layers):
layer = self.materials[(initial_material_index + i) % self.num_materials]
thickness = np.random.randint(self.lower, self.upper)
self.layers.append(layer)
self.thicknesses.append(thickness)
self.current_merit = 0
self.current_step_count = 0
return self._get_obs()
def _get_obs(self):
state = prepare_data_for_unified(self.layers, self.thicknesses, self.available_materials, self.max_layers, self.upper, self.lower)
return state
def render(self, mode='human'):
self.simulator.spectrum(self.layers, self.thicknesses, plot=True)
class DDPGTMMEnv(gym.Env):
def __init__(self, simulator, target, available_materials, target_wavelength_ranges, min_layers, max_layers,
agent_template=None, min_actions_per_episode=100, stack_mode='periodic', desired_absorption=None,
narrowbands=None,upper=None,lower=None,metal_lower=None,metal_upper=None):
super(DDPGTMMEnv, self).__init__()
self.simulator = simulator
self.target = target
self.available_materials = available_materials
self.target_wavelength_ranges = target_wavelength_ranges
self.materials = [material_info['material'] for material_info in available_materials]
self.materials_idx = {material: idx for idx, material in enumerate(self.materials)}
self.material_types = {material_info['material']: material_info['type'] for material_info in available_materials}
self.num_materials = len(self.materials)
self.current_merit = 0
self.agent_template = agent_template
self.min_layers = min_layers
self.max_layers = max_layers
self.best_design = None
self.stack_mode = stack_mode
self.desired_absorption = desired_absorption
self.narrowbands = narrowbands
self.min_actions_per_episode = min_actions_per_episode
self.current_step_count = 0
self.upper = upper
self.lower = lower
self.metal_lower = metal_lower
self.metal_upper = metal_upper
self.action_space = spaces.Discrete(self.num_materials + 3)
# Add, Modify, Remove, Done actions
self.observation_space = spaces.Box(
low=0,
high=1,
shape=(self.max_layers * 2,),
dtype=np.float32
)
self.reset()
def step(self, action):
action_type, layer_idx = action
if action_type >= self.action_space.n:
raise ValueError("Invalid action: action_type out of range. ddpg env")
if len(self.layers) < self.min_layers:
if action_type >= self.num_materials:
action_type = np.random.randint(0, self.num_materials)
if len(self.layers) >= self.max_layers:
print("Max layers reached. Only 'done' or 'modify' action is allowed.")
if action_type < self.num_materials:
action_type = self.num_materials + 1 # Force a modify action
if action_type == self.num_materials and self.current_step_count < self.min_actions_per_episode:
print("Minimum actions not yet taken. Forcing a random action.")
action_type = np.random.randint(0, self.num_materials) # Force a random action
if action_type == self.num_materials:
print("Done action chosen. Ending episode.")
self.current_step_count = 0
return self._get_obs(), self.current_merit, True, {}
elif action_type == self.num_materials + 1: # Modify action
if len(self.layers) == 0:
raise ValueError("No layers to modify.")
layers_to_modify = np.random.randint(1, 9)
for _ in range(layers_to_modify):
layer_to_modify = np.random.randint(len(self.layers))
material = self.layers[layer_to_modify]
thickness_range = self.get_thickness_range(material)
new_thickness = np.random.randint(*thickness_range)
self.thicknesses[layer_to_modify] = new_thickness
print(f"Modified layer {layer_to_modify} to thickness {new_thickness}")
elif self.stack_mode == 'random' and action_type == self.num_materials + 2: # Remove action
if len(self.layers) <= self.min_layers:
print("Skipping invalid action: Cannot remove layer below minimum layers.")
return self._get_obs(), 0, False, {}
layer_to_remove = layer_idx if layer_idx < len(self.layers) else -1
self.layers.pop(layer_to_remove)
self.thicknesses.pop(layer_to_remove)
print("Removed layer at index", layer_idx)
else: # Add action
if self.stack_mode == 'periodic':
if len(self.layers) > 0:
last_layer = self.layers[-1]
last_material_index = self.materials.index(last_layer)
next_material_index = (last_material_index + 1) % self.num_materials
layer = self.materials[next_material_index]
else:
layer = self.materials[0]
else: # Random stacking
layer = random.choice(self.materials)
thickness_range = self.get_thickness_range(layer)
new_thickness = np.random.randint(*thickness_range)
if len(self.layers) < self.max_layers:
self.layers.append(layer)
self.thicknesses.append(new_thickness)
print(f"Added layer {layer} with thickness {new_thickness}")
# Save previous state
self.previous_layers = self.layers.copy()
self.previous_thicknesses = self.thicknesses.copy()
validate_layers_thicknesses(self.layers, self.thicknesses)
_, _, A = self.simulator.spectrum(self.layers, self.thicknesses)
reward = ddpg_reward_fun(_, _, A, self.simulator.wavelength, self.target_wavelength_ranges,self.desired_absorption, self.previous_layers, self.previous_thicknesses, template=None, narrowbands=self.narrowbands)
self.current_merit = reward
print(f"Current layers: {self.layers}")
print(f"Current thicknesses: {self.thicknesses}")
self.current_step_count += 1
return self._get_obs(), reward, False, {}
def get_thickness_range(self, material):
if self.material_types[material] == 'metal':
return self.metal_lower, self.metal_upper
elif self.material_types[material] == 'glue':
return 4, 10
elif self.material_types[material] == 'dielectric' or self.material_types[material] == 'oxide':
return self.lower, self.upper
else:
return self.lower, self.upper
def reset(self):
self.layers = []
self.thicknesses = []
initial_material_index = 0
for i in range(self.min_layers):
layer = self.materials[(initial_material_index + i) % self.num_materials]
thickness = np.random.randint(self.lower, self.upper)
self.layers.append(layer)
self.thicknesses.append(thickness)
self.current_merit = 0
self.current_step_count = 0
return self._get_obs()
def _get_obs(self):
state = prepare_data_for_unified(self.layers, self.thicknesses, self.available_materials, self.max_layers, self.upper, self.lower)
return state
def render(self, mode='human'):
self.simulator.spectrum(self.layers, self.thicknesses, plot=True)
class DDPGTMMEnvWithTemplate(gym.Env):
def __init__(self, simulator, target, available_materials, target_wavelength_ranges, min_layers, max_layers,
template, min_actions_per_episode=100, stack_mode='periodic',
desired_absorption=None,narrowbands=None, upper=None,lower=None,metal_lower=None,metal_upper=None):
super(DDPGTMMEnvWithTemplate, self).__init__()
self.simulator = simulator
self.target = target
self.available_materials = available_materials
self.target_wavelength_ranges = target_wavelength_ranges
self.materials = [material_info['material'] for material_info in available_materials]
self.materials_idx = {material: idx for idx, material in enumerate(self.materials)}
self.material_types = {material_info['material']: material_info['type'] for material_info in available_materials}
self.num_materials = len(self.materials)
self.current_merit = 0
self.agent_template = template
self.min_layers = min_layers
self.max_layers = max_layers
self.best_design = None
self.stack_mode = stack_mode
self.desired_absorption = desired_absorption
self.min_actions_per_episode = min_actions_per_episode
self.current_step_count = 0
self.narrowbands = narrowbands
self.lower = lower
self.upper = upper
self.metal_lower = metal_lower
self.metal_upper = metal_upper
if template is not None and len(template) > 0:
print("Template provided, switching to sequence mode.")
self.action_space = spaces.Discrete(self.num_materials + 2) # Add, Modify, Done actions
else:
raise ValueError("Template must be provided for DDPGTMMEnvWithTemplate.")
self.observation_space = spaces.Box(
low=0,
high=1,
shape=(self.max_layers * 2,),
dtype=np.float32
)
self.reset()
def step(self, action):
action_type, layer_idx = action
if action_type == self.num_materials: # Done action
print("Done action chosen. Ending episode.")
self.current_step_count = 0
return self._get_obs(), self.current_merit, True, {}
elif action_type == self.num_materials + 1: # Modify action
if len(self.layers) == 0:
raise ValueError("No layers to modify.")
layer_to_modify = layer_idx % len(self.layers) # Ensure layer_idx is within range
material = self.layers[layer_to_modify]
thickness_range = self.get_thickness_range(material)
new_thickness = np.random.randint(*thickness_range)
self.thicknesses[layer_to_modify] = new_thickness
print(f"Modified layer {layer_to_modify} to thickness {new_thickness}")
else: # Add action
if action_type >= self.num_materials:
raise ValueError("Invalid action: action_type out of range. DDPG template env")
if len(self.layers) < self.max_layers:
if self.stack_mode == 'periodic':
if len(self.layers) > 0:
last_layer = self.layers[-1]
last_material_index = self.materials.index(last_layer)
next_material_index = (last_material_index + 1) % self.num_materials
layer = self.materials[next_material_index]
else:
layer = self.materials[0]
else: # Random stacking
used_materials = set(self.layers)
available_materials = [m for m in self.materials if m not in used_materials]
if not available_materials:
available_materials = self.materials
layer = random.choice(available_materials)
thickness_range = self.get_thickness_range(layer)
new_thickness = np.random.randint(*thickness_range)
self.layers.append(layer)
self.thicknesses.append(new_thickness)
print(f"Added layer {layer} with thickness {new_thickness}")
# Save previous state
self.previous_layers = self.layers.copy()
self.previous_thicknesses = self.thicknesses.copy()
validate_layers_thicknesses(self.layers, self.thicknesses)
_, _, A = self.simulator.spectrum(self.layers, self.thicknesses)
reward = ddpg_reward_fun(_, _, A, self.simulator.wavelength, self.target_wavelength_ranges, self.desired_absorption,
self.previous_layers, self.previous_thicknesses, template=self.agent_template, narrowbands=self.narrowbands)
self.current_merit = reward
print(f"Current layers: {self.layers}")
print(f"Current thicknesses: {self.thicknesses}")
self.current_step_count += 1
return self._get_obs(), reward, False, {}
def get_thickness_range(self, material):
if self.material_types[material] == 'metal':
return self.metal_lower, self.metal_upper
elif self.material_types[material] == 'glue':
return 4,10
elif self.material_types[material] == 'dielectric' or self.material_types[material] == 'oxide':
return self.lower, self.upper
else:
return self.lower, self.upper
def reset(self):
self.layers = []
self.thicknesses = []
initial_material_index = 0
for i in range(1): # Start with one layer for sequence mode
layer = self.materials[initial_material_index % self.num_materials]
thickness = np.random.randint(self.lower, self.upper)
self.layers.append(layer)
self.thicknesses.append(thickness)
self.current_merit = 0
self.current_step_count = 0
return self._get_obs()
def _get_obs(self):
state = prepare_data_for_unified(self.layers, self.thicknesses, self.available_materials, self.max_layers, self.upper, self.lower)
return state
def render(self, mode='human'):
self.simulator.spectrum(self.layers, self.thicknesses, plot=True)
class PPOUpdateTMMEnv(gym.Env):
def __init__(self, simulator, target, available_materials, target_wavelength_ranges, min_layers, max_layers,
agent_template=None, min_actions_per_episode=50, reward_tracker=None,
stack_mode='periodic',
desired_absorption=None,
narrowbands=None,
upper=None, lower=None,
metal_lower=None, metal_upper=None):
super(PPOUpdateTMMEnv, self).__init__()
self.simulator = simulator
self.target = target
self.available_materials = available_materials
self.target_wavelength_ranges = target_wavelength_ranges
self.materials = [material_info['material'] for material_info in available_materials]
self.materials_idx = {material: idx for idx, material in enumerate(self.materials)}
self.material_types = {material_info['material']: material_info['type'] for material_info in
available_materials}
self.num_materials = len(self.materials)
self.current_merit = 0
self.agent_template = agent_template
self.min_layers = min_layers
self.max_layers = max_layers
self.best_design = None
self.stack_mode = stack_mode
self.min_actions_per_episode = min_actions_per_episode
self.current_step_count = 0
self.desired_absorption = desired_absorption
self.narrowbands = narrowbands
self.upper = upper
self.lower = lower
self.metal_lower = metal_lower
self.metal_upper = metal_upper
if stack_mode == 'periodic':
self.action_space = spaces.Discrete(self.num_materials + 2) # Add, Modify, Done
else:
self.action_space = spaces.Discrete(self.num_materials + 3) # Add, Modify, Remove, Done
self.observation_space = spaces.Box(
low=0,
high=1,
shape=(self.max_layers * 2,),
dtype=np.float32
)
self.reset()
def step(self, action):
action_type, layer_idx = action
if action_type < 0 or action_type >= self.num_materials + (3 if self.stack_mode == 'random' else 2):
raise ValueError("Invalid action: action_type out of range. ppo update env")
if len(self.layers) < self.min_layers and action_type >= self.num_materials:
action_type = np.random.randint(0, self.num_materials) # Force an add action
if len(self.layers) >= self.max_layers:
if action_type < self.num_materials:
action_type = self.num_materials + 1 # Force a modify action
if action_type == self.num_materials and self.current_step_count < self.min_actions_per_episode:
if len(self.layers) >= self.max_layers:
action_type = self.num_materials + 1 # Force a modify action if max layers reached
else:
action_type = np.random.randint(0, self.num_materials) # Force a random action
if action_type == self.num_materials: # Done action
print("Done action chosen. Ending episode.")
self.current_step_count = 0
return self._get_obs(), self.current_merit, True, {}
elif action_type == self.num_materials + 1: # Modify action
if len(self.layers) == 0:
raise ValueError("No layers to modify.")
layers_to_modify = np.random.randint(1, 9)
for _ in range(layers_to_modify):
layer_to_modify = np.random.randint(len(self.layers))
material = self.layers[layer_to_modify]
thickness_range = self.get_thickness_range(material)
new_thickness = np.random.randint(*thickness_range)
self.thicknesses[layer_to_modify] = new_thickness
print(f"Modified layer {layer_to_modify} to thickness {new_thickness}")
elif self.stack_mode == 'random' and action_type == self.num_materials + 2: # Remove action
if len(self.layers) <= self.min_layers:
print("Skipping invalid action: Cannot remove layer below minimum layers.")
return self._get_obs(), 0, False, {}
layer_to_remove = layer_idx if layer_idx < len(self.layers) else -1
self.layers.pop(layer_to_remove)
self.thicknesses.pop(layer_to_remove)
print("Removed layer at index", layer_idx)
else: # Add action
if action_type >= self.num_materials:
raise ValueError("Invalid action: action_type out of range.ppo update env")
if self.stack_mode == 'periodic':
if len(self.layers) > 0:
last_layer = self.layers[-1]
last_material_index = self.materials.index(last_layer)
next_material_index = (last_material_index + 1) % self.num_materials
layer = self.materials[next_material_index]
else:
layer = self.materials[0]
else: # Random stacking
layer = random.choice(self.materials)
thickness_range = self.get_thickness_range(layer)
new_thickness = np.random.randint(*thickness_range)
if len(self.layers) < self.max_layers:
self.layers.append(layer)
self.thicknesses.append(new_thickness)
print(f"Added layer {layer} with thickness {new_thickness}")
# Save previous state
self.previous_layers = self.layers.copy()
self.previous_thicknesses = self.thicknesses.copy()
validate_layers_thicknesses(self.layers, self.thicknesses)
_, _, A = self.simulator.spectrum(self.layers, self.thicknesses)
reward = ppo_optimization_reward(_, _, A, self.simulator.wavelength, self.target_wavelength_ranges, self.desired_absorption, narrowbands=self.narrowbands)
self.current_merit = reward
print(f"Current layers: {self.layers}")
print(f"Current thicknesses: {self.thicknesses}")
self.current_step_count += 1
return self._get_obs(), reward, False, {}
def get_thickness_range(self, material):
if self.material_types[material] == 'metal':
return self.metal_lower, self.metal_upper
elif self.material_types[material] == 'glue':
return 4,10
elif self.material_types[material] == 'dielectric' or self.material_types[material] == 'oxide':
return self.lower, self.upper
else:
return self.lower, self.upper
def reset(self):
self.layers = []
self.thicknesses = []
initial_material_index = 0
for i in range(self.min_layers):
layer = self.materials[(initial_material_index + i) % self.num_materials]
thickness = np.random.randint(self.lower, self.upper)
self.layers.append(layer)
self.thicknesses.append(thickness)
self.current_merit = 0
self.current_step_count = 0
return self._get_obs()
def _get_obs(self):
state = prepare_data_for_unified(self.layers, self.thicknesses, self.available_materials, self.max_layers,self.upper, self.lower)
return state
def render(self, mode='human'):
self.simulator.spectrum(self.layers, self.thicknesses, plot=True)