-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathz_021.py
38 lines (34 loc) · 1.32 KB
/
z_021.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import numpy as np
import pandas as pd
import igraph as ig
import matplotlib.pyplot as plt
import csv
raw_edges = pd.read_csv("polished_data/hashtags_edges_list_undirected.csv")
node_names = pd.read_csv("polished_data/hashtags_from_influencers.csv")[
"Hashtag"
].tolist()
node_name_position = {x: i for i, x in enumerate(node_names)}
inverse_node_name_position = {i: x for i, x in enumerate(node_names)}
edges = pd.DataFrame(
{
"Source": raw_edges.Source.apply(lambda s: node_name_position[s]).to_numpy(),
"Target": raw_edges.Target.apply(lambda s: node_name_position[s]).to_numpy(),
"weight": raw_edges.Weight,
},
)
g = ig.Graph.DataFrame(edges, directed=False)
g.vs["original_index"] = list(range(len(g.vs)))
# g.delete_vertices([v.index for v in g.vs if g.degree(v, mode="in") <= 3])
# g = g.subgraph(max(g.connected_components(mode="weak"), key=len))
# print(f"{edges.shape[0]==g.ecount()=}")
pd.DataFrame(
{
"id": [inverse_node_name_position[i] for i in g.vs["original_index"]],
"Harmonic centrality": g.harmonic_centrality(weights="weight"),
"Betweenness centrality": g.betweenness(weights="weight"),
}
).sort_values(by=["Harmonic centrality"], ascending=False).to_csv(
"polished_data/hashtags_centralities.csv",
index=False,
quoting=csv.QUOTE_NONNUMERIC,
)