-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathrenderer.py
198 lines (168 loc) · 8.5 KB
/
renderer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
# -*- coding: utf-8 -*-
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2023 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: mica@tue.mpg.de
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from pytorch3d.io import load_obj
from pytorch3d.structures import Meshes
from skimage.io import imread
import util
from masking import Masking
from tracker_rasterizer import TrackerRasterizer
sky = torch.from_numpy(np.array([80, 140, 200]) / 255.).cuda()
def apply_gamma(rgb, gamma="srgb"):
if gamma == "srgb":
T = 0.0031308
rgb1 = torch.max(rgb, rgb.new_tensor(T))
return torch.where(rgb < T, 12.92 * rgb, (1.055 * torch.pow(torch.abs(rgb1), 1 / 2.4) - 0.055))
elif gamma is None:
return rgb
else:
return torch.pow(torch.max(rgb, rgb.new_tensor(0.0)), 1.0 / gamma)
def remove_gamma(rgb, gamma="srgb"):
if gamma == "srgb":
T = 0.04045
rgb1 = torch.max(rgb, rgb.new_tensor(T))
return torch.where(rgb < T, rgb / 12.92, torch.pow(torch.abs(rgb1 + 0.055) / 1.055, 2.4))
elif gamma is None:
return rgb
else:
res = torch.pow(torch.max(rgb, rgb.new_tensor(0.0)), gamma) + torch.min(rgb, rgb.new_tensor(0.0))
return res
class Renderer(nn.Module):
def __init__(self, image_size, obj_filename, uv_size=512, flip=False):
super(Renderer, self).__init__()
self.image_size = image_size
self.uv_size = uv_size
verts, faces, aux = load_obj(obj_filename)
uvcoords = aux.verts_uvs[None, ...] # (N, V, 2)
uvfaces = faces.textures_idx[None, ...] # (N, F, 3)
faces = faces.verts_idx[None, ...]
mask = torch.from_numpy(imread('data/uv_mask_eyes.png') / 255.).permute(2, 0, 1).cuda()[0:3, :, :]
mask = mask > 0.
mask = F.interpolate(mask[None].float(), [2048, 2048], mode='bilinear')
self.register_buffer('mask', mask)
self.rasterizer = TrackerRasterizer(image_size, None)
self.masking = Masking()
# faces
self.register_buffer('faces', faces)
self.register_buffer('raw_uvcoords', uvcoords)
# uv coordsw
uvcoords = torch.cat([uvcoords, uvcoords[:, :, 0:1] * 0. + 1.], -1) # [bz, ntv, 3]
uvcoords = uvcoords * 2 - 1
uvcoords[..., 1] = -uvcoords[..., 1]
face_uvcoords = util.face_vertices(uvcoords, uvfaces)
self.register_buffer('uvcoords', uvcoords)
self.register_buffer('uvfaces', uvfaces)
self.register_buffer('face_uvcoords', face_uvcoords)
# shape colors
colors = torch.tensor([74, 120, 168])[None, None, :].repeat(1, faces.max() + 1, 1).float() / 255.
face_colors = util.face_vertices(colors, faces)
self.register_buffer('face_colors', face_colors)
## lighting
pi = np.pi
sh_const = torch.tensor(
[
1 / np.sqrt(4 * pi),
((2 * pi) / 3) * (np.sqrt(3 / (4 * pi))),
((2 * pi) / 3) * (np.sqrt(3 / (4 * pi))),
((2 * pi) / 3) * (np.sqrt(3 / (4 * pi))),
(pi / 4) * (3) * (np.sqrt(5 / (12 * pi))),
(pi / 4) * (3) * (np.sqrt(5 / (12 * pi))),
(pi / 4) * (3) * (np.sqrt(5 / (12 * pi))),
(pi / 4) * (3 / 2) * (np.sqrt(5 / (12 * pi))),
(pi / 4) * (1 / 2) * (np.sqrt(5 / (4 * pi))),
],
dtype=torch.float32,
)
self.register_buffer('constant_factor', sh_const)
def set_size(self, size):
self.rasterizer.raster_settings.image_size = size
def add_SHlight(self, normal_images, sh_coeff):
'''
sh_coeff: [bz, 9, 3]
'''
N = normal_images
sh = torch.stack([
N[:, 0] * 0. + 1., N[:, 0], N[:, 1],
N[:, 2], N[:, 0] * N[:, 1], N[:, 0] * N[:, 2],
N[:, 1] * N[:, 2], N[:, 0] ** 2 - N[:, 1] ** 2, 3 * (N[:, 2] ** 2) - 1
], 1) # [bz, 9, h, w]
sh = sh * self.constant_factor[None, :, None, None]
shading = torch.sum(sh_coeff[:, :, :, None, None] * sh[:, :, None, :, :], 1) # [bz, 9, 3, h, w]
return shading
def render_depth(self, vertices_world, cameras, faces=None):
self.rasterizer.reset()
B = vertices_world.shape[0]
if faces is None:
faces = self.faces.expand(B, -1, -1)
meshes_world = Meshes(verts=vertices_world.float(), faces=faces.long())
face_vertices_view = util.face_vertices(cameras.get_world_to_view_transform().transform_points(vertices_world), faces)
depth_mask = util.face_vertices(self.masking.get_mask_depth(), faces)
attributes = torch.cat([face_vertices_view, depth_mask], -1)
rendering = self.rasterizer(meshes_world, attributes, cameras=cameras)[0]
view_vertices_images = rendering[:, 0:3, :, :].detach()
mask = rendering[:, 3:6, :, :].detach() > 0
return view_vertices_images * mask
def forward(self, vertices_world, albedos, lights, cameras):
B = vertices_world.shape[0]
faces = self.faces.expand(B, -1, -1)
meshes_world = Meshes(verts=vertices_world.float(), faces=faces.long())
meshes_ndc = self.rasterizer.transform(meshes_world, cameras=cameras)
vertices_ndc = meshes_ndc.verts_padded()
face_mask = util.face_vertices(self.masking.to_render_mask(self.masking.get_mask_face()), faces)
render_mask = util.face_vertices(self.masking.get_mask_rendering(), faces)
depth_mask = util.face_vertices(self.masking.get_mask_depth(), faces)
eyes_region_mask = util.face_vertices(self.masking.get_mask_eyes_region_rendering(), faces)
eyes_mask = util.face_vertices(self.masking.get_mask_eyes_rendering(), faces)
face_vertices_ndc = util.face_vertices(vertices_ndc, faces)
face_vertices_view = util.face_vertices(cameras.get_world_to_view_transform().transform_points(vertices_world), faces)
face_normals = meshes_world.verts_normals_packed()[meshes_world.faces_packed()][None]
uv = self.face_uvcoords.expand(B, -1, -1, -1)
attributes = torch.cat([uv, face_vertices_ndc, face_normals, face_mask, face_vertices_view, render_mask, depth_mask, eyes_region_mask, eyes_mask], -1)
rendering, zbuffer = self.rasterizer(meshes_world, attributes, cameras=cameras)
uvcoords_images = rendering[:, 0:3, :, :].detach()
ndc_vertices_images = rendering[:, 3:6, :, :]
normal_images = rendering[:, 6:9, :, :].detach()
mask_images_mesh = rendering[:, 9:12, :, :].detach()
view_vertices_images = rendering[:, 12:15, :, :]
mask_images_rendering = rendering[:, 15:18, :, :].detach()
mask_images_depth = rendering[:, 18:21, :, :].detach()
mask_images_eyes_region = rendering[:, 21:24, :, :].detach()
mask_images_eyes = rendering[:, 24:27, :, :].detach()
alpha_images = rendering[:, -1, :, :][:, None, :, :].detach()
mask = self.mask.repeat(B, 1, 1, 1)
grid = uvcoords_images.permute(0, 2, 3, 1)[:, :, :, :2]
albedo_images = F.grid_sample(albedos, grid, align_corners=False).float()
mask_images = F.grid_sample(mask, grid, align_corners=False).float()
shading_images = self.add_SHlight(normal_images, lights)
images = albedo_images * shading_images
outputs = {
'grid': grid,
'images': images * alpha_images,
'albedo_images': albedo_images,
'alpha_images': alpha_images,
'mask_images': (mask_images * alpha_images > 0).float(),
'mask_images_mesh': (mask_images_mesh > 0).float(),
'mask_images_rendering': (mask_images_rendering > 0).float(),
'mask_images_depth': (mask_images_depth > 0).float(),
'mask_images_eyes_region': (mask_images_eyes_region > 0).float(),
'mask_images_eyes': (mask_images_eyes > 0).float(),
'position_images': ndc_vertices_images,
'position_view_images': view_vertices_images,
'zbuffer': zbuffer
}
return outputs