-
Notifications
You must be signed in to change notification settings - Fork 136
/
task_cips_sogou_qa.py
269 lines (232 loc) · 10.5 KB
/
task_cips_sogou_qa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
#! -*- coding: utf-8 -*-
# 用seq2seq的方式阅读理解任务
# 数据集和评测同 https://github.com/bojone/dgcnn_for_reading_comprehension
import json, os, re
import numpy as np
from bert4keras.backend import keras, K
from bert4keras.models import build_transformer_model
from bert4keras.tokenizers import Tokenizer, load_vocab
from bert4keras.optimizers import Adam
from bert4keras.snippets import sequence_padding, open
from bert4keras.snippets import DataGenerator, AutoRegressiveDecoder
from tqdm import tqdm
max_p_len = 256
max_q_len = 64
max_a_len = 32
max_qa_len = max_q_len + max_a_len
batch_size = 32
epochs = 20
# RoBERTa small
config_path = '/root/kg/bert/chinese_roberta_L-6_H-384_A-12/bert_config.json'
checkpoint_path = '/root/kg/bert/chinese_roberta_L-6_H-384_A-12/bert_model.ckpt'
dict_path = '/root/kg/bert/chinese_roberta_L-6_H-384_A-12/vocab.txt'
model_type = 'bert'
"""
# albert small
config_path = '/root/kg/bert/albert_small_zh_google/albert_config.json'
checkpoint_path = '/root/kg/bert/albert_small_zh_google/albert_model.ckpt'
dict_path = '/root/kg/bert/albert_small_zh_google/vocab.txt'
model_type = 'albert'
# RoBERTa tiny
config_path = '/root/kg/bert/chinese_roberta_L-4_H-312_A-12/bert_config.json'
checkpoint_path = '/root/kg/bert/chinese_roberta_L-4_H-312_A-12/bert_model.ckpt'
dict_path = '/root/kg/bert/chinese_roberta_L-4_H-312_A-12/vocab.txt'
model_type = 'bert'
# albert tiny
config_path = '/root/kg/bert/albert_tiny_zh_google/albert_config.json'
checkpoint_path = '/root/kg/bert/albert_tiny_zh_google/albert_model.ckpt'
dict_path = '/root/kg/bert/albert_tiny_zh_google/vocab.txt'
model_type = 'albert'
"""
# 标注数据
webqa_data = json.load(open('/root/qa_datasets/WebQA.json'))
sogou_data = json.load(open('/root/qa_datasets/SogouQA.json'))
# 保存一个随机序(供划分valid用)
if not os.path.exists('../random_order.json'):
random_order = list(range(len(sogou_data)))
np.random.shuffle(random_order)
json.dump(random_order, open('../random_order.json', 'w'), indent=4)
else:
random_order = json.load(open('../random_order.json'))
# 划分valid
train_data = [sogou_data[j] for i, j in enumerate(random_order) if i % 3 != 0]
valid_data = [sogou_data[j] for i, j in enumerate(random_order) if i % 3 == 0]
train_data.extend(train_data)
train_data.extend(webqa_data) # 将SogouQA和WebQA按2:1的比例混合
# 加载并精简词表,建立分词器
token_dict, keep_tokens = load_vocab(
dict_path=dict_path,
simplified=True,
startwith=['[PAD]', '[UNK]', '[CLS]', '[SEP]'],
)
tokenizer = Tokenizer(token_dict, do_lower_case=True)
class data_generator(DataGenerator):
"""数据生成器
"""
def __iter__(self, random=False):
"""单条样本格式:[CLS]篇章[SEP]问题[SEP]答案[SEP]
"""
batch_token_ids, batch_segment_ids = [], []
for is_end, D in self.sample(random):
question = D['question']
answers = [p['answer'] for p in D['passages'] if p['answer']]
passage = np.random.choice(D['passages'])['passage']
passage = re.sub(u' |、|;|,', ',', passage)
final_answer = ''
for answer in answers:
if all([a in passage[:max_p_len - 2] for a in answer.split(' ')]):
final_answer = answer.replace(' ', ',')
break
qa_token_ids, qa_segment_ids = tokenizer.encode(
question, final_answer, max_length=max_qa_len + 1)
p_token_ids, p_segment_ids = tokenizer.encode(passage,
max_length=max_p_len)
token_ids = p_token_ids + qa_token_ids[1:]
segment_ids = p_segment_ids + qa_segment_ids[1:]
batch_token_ids.append(token_ids)
batch_segment_ids.append(segment_ids)
if len(batch_token_ids) == self.batch_size or is_end:
batch_token_ids = sequence_padding(batch_token_ids)
batch_segment_ids = sequence_padding(batch_segment_ids)
yield [batch_token_ids, batch_segment_ids], None
batch_token_ids, batch_segment_ids = [], []
model = build_transformer_model(
config_path,
checkpoint_path,
model=model_type,
application='unilm',
keep_tokens=keep_tokens, # 只保留keep_tokens中的字,精简原字表
)
model.summary()
# 交叉熵作为loss,并mask掉输入部分的预测
y_true = model.input[0][:, 1:] # 目标tokens
y_mask = model.input[1][:, 1:]
y_pred = model.output[:, :-1] # 预测tokens,预测与目标错开一位
cross_entropy = K.sparse_categorical_crossentropy(y_true, y_pred)
cross_entropy = K.sum(cross_entropy * y_mask) / K.sum(y_mask)
model.add_loss(cross_entropy)
model.compile(optimizer=Adam(1e-5))
class ReadingComprehension(AutoRegressiveDecoder):
"""beam search解码来生成答案
passages为多篇章组成的list,从多篇文章中自动决策出最优的答案,
如果没答案,则返回空字符串。
mode是extractive时,按照抽取式执行,即答案必须是原篇章的一个片段。
"""
def __init__(self, mode='extractive', **kwargs):
super(ReadingComprehension, self).__init__(**kwargs)
self.mode = mode
def get_ngram_set(self, x, n):
"""生成ngram合集,返回结果格式是:
{(n-1)-gram: set([n-gram的第n个字集合])}
"""
result = {}
for i in range(len(x) - n + 1):
k = tuple(x[i:i + n])
if k[:-1] not in result:
result[k[:-1]] = set()
result[k[:-1]].add(k[-1])
return result
@AutoRegressiveDecoder.set_rtype('probas')
def predict(self, inputs, output_ids, step):
inputs = [i for i in inputs if i[0, 0] > -1] # 过滤掉无答案篇章
topk = len(inputs[0])
all_token_ids, all_segment_ids = [], []
for token_ids in inputs: # inputs里每个元素都代表一个篇章
token_ids = np.concatenate([token_ids, output_ids], 1)
segment_ids = np.zeros_like(token_ids)
if step > 0:
segment_ids[:, -output_ids.shape[1]:] = 1
all_token_ids.extend(token_ids)
all_segment_ids.extend(segment_ids)
padded_all_token_ids = sequence_padding(all_token_ids)
padded_all_segment_ids = sequence_padding(all_segment_ids)
probas = model.predict([padded_all_token_ids, padded_all_segment_ids])
probas = [
probas[i, len(ids) - 1] for i, ids in enumerate(all_token_ids)
]
probas = np.array(probas).reshape((len(inputs), topk, -1))
if step == 0:
# 这一步主要是排除没有答案的篇章
# 如果一开始最大值就为end_id,那说明该篇章没有答案
argmax = probas[:, 0].argmax(axis=1)
available_idxs = np.where(argmax != self.end_id)[0]
if len(available_idxs) == 0:
scores = np.zeros_like(probas[0])
scores[:, self.end_id] = 1
return scores
else:
for i in np.where(argmax == self.end_id)[0]:
inputs[i][:, 0] = -1 # 无答案篇章首位标记为-1
probas = probas[available_idxs]
inputs = [i for i in inputs if i[0, 0] > -1] # 过滤掉无答案篇章
if self.mode == 'extractive':
# 如果是抽取式,那么答案必须是篇章的一个片段
# 那么将非篇章片段的概率值全部置0
new_probas = np.zeros_like(probas)
ngrams = {}
for token_ids in inputs:
token_ids = token_ids[0]
sep_idx = np.where(token_ids == tokenizer._token_end_id)[0][0]
p_token_ids = token_ids[1:sep_idx]
for k, v in self.get_ngram_set(p_token_ids, step + 1).items():
ngrams[k] = ngrams.get(k, set()) | v
for i, ids in enumerate(output_ids):
available_idxs = ngrams.get(tuple(ids), set())
available_idxs.add(tokenizer._token_end_id)
available_idxs = list(available_idxs)
new_probas[:, i, available_idxs] = probas[:, i, available_idxs]
probas = new_probas
return (probas**2).sum(0) / (probas.sum(0) + 1) # 某种平均投票方式
def answer(self, question, passages, topk=1):
token_ids = []
for passage in passages:
passage = re.sub(u' |、|;|,', ',', passage)
p_token_ids = tokenizer.encode(passage, max_length=max_p_len)[0]
q_token_ids = tokenizer.encode(question, max_length=max_q_len + 1)[0]
token_ids.append(p_token_ids + q_token_ids[1:])
output_ids = self.beam_search(token_ids, topk) # 基于beam search
return tokenizer.decode(output_ids)
reader = ReadingComprehension(start_id=None,
end_id=tokenizer._token_end_id,
maxlen=max_a_len,
mode='extractive')
def predict_to_file(data, filename, topk=1):
"""将预测结果输出到文件,方便评估
"""
with open(filename, 'w', encoding='utf-8') as f:
for d in tqdm(iter(data), desc=u'正在预测(共%s条样本)' % len(data)):
q_text = d['question']
p_texts = [p['passage'] for p in d['passages']]
a = reader.answer(q_text, p_texts, topk)
if a:
s = u'%s\t%s\n' % (d['id'], a)
else:
s = u'%s\t\n' % (d['id'])
f.write(s)
f.flush()
class Evaluate(keras.callbacks.Callback):
def __init__(self):
self.best = 0.
def on_epoch_end(self, epoch, logs=None):
acc, f1, final = self.evaluate()
if final > self.best:
self.best = final
model.save_weights('best_model.weights')
print('acc: %.5f, f1: %.5f, final: %.5f, best final: %.5f\n' % (acc, f1, final, self.best))
def evaluate(self):
predict_to_file(valid_data, 'tmp_result.txt')
acc, f1, final = json.loads(
os.popen(
'python /root/reading/evaluate_tool/evaluate.py tmp_result.txt tmp_output.txt'
).read().strip()
)
return acc, f1, final
if __name__ == '__main__':
evaluator = Evaluate()
train_generator = data_generator(train_data, batch_size)
model.fit_generator(train_generator.forfit(),
steps_per_epoch=len(train_generator),
epochs=epochs,
callbacks=[evaluator])
else:
model.load_weights('./best_model.weights')