-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDosaCNV.py
276 lines (220 loc) · 11.9 KB
/
DosaCNV.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import pandas as pd
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Model, Sequential
from tensorflow.keras.layers import Input, Dense, Lambda, Dropout
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras import regularizers
import time
import argparse
import random
import os
if __name__ == '__main__':
parser = argparse.ArgumentParser()
subparsers = parser.add_subparsers(dest = 'subparser_name')
parser_a = subparsers.add_parser("train")
parser_a.add_argument("-train_data", dest="train_index", required=True,
help="input training data")
parser_a.add_argument("-val_data", dest="val_index", required=True,
help="input validation data")
parser_a.add_argument("-annotation", dest="annotation", required=True,
help="gene level annotation")
parser_a.add_argument("-max_n_gene", dest="max_n_gene", default = 100, type = int,
help="maximum number of genes within a deletion")
parser_a.add_argument("-output_model_name", dest="output_model_name", required=True,
help="set name for saved model/models")
parser_a.add_argument("-lr", dest="learning_rate", default = 3e-4, type = float,
help="model learning rate")
parser_a.add_argument("-seed", dest="seed",default = int(time.time()), type = int,
help="set seed for training")
parser_a.add_argument("-save_gene_model", dest="save_gene_model",action='store_true',
help="save gene level model (DosaCNV-HI)")
parser_b = subparsers.add_parser("predict-deletion")
parser_b.add_argument("-input_data", dest="input_index", required=True,
help="input deletion data")
parser_b.add_argument("-annotation", dest="annotation", default="./annotation/anno_for_deletion.txt",
help="gene level annotation")
parser_b.add_argument("-saved_model_name", dest="saved_model_name",default="pretrained_deletion",
help="load saved model for prediction")
parser_b.add_argument("-output_name", dest="output_name", required = True,
help="output file name")
parser_b.add_argument("-seed", dest="seed",default = int(time.time()), type = int,
help="set seed")
parser_b.add_argument("-max_n_gene", dest="max_n_gene", default = 100, type = int,
help="maximum number of genes within a deletion")
parser_c = subparsers.add_parser("predict-gene")
parser_c.add_argument("-input_data", dest="input_index", required=True,
help="input deletion data")
parser_c.add_argument("-saved_model_name", dest="saved_model_name", default="pretrained_gene",
help="load saved model for prediction")
parser_c.add_argument("-output_name", dest="output_name", required = True,
help="output file name")
parser_c.add_argument("-seed", dest="seed",default = int(time.time()), type = int,
help="set seed")
parser_d = subparsers.add_parser("explain-gene")
parser_d.add_argument("-explain_set", dest="explain_set", required=True,
help="explaining set")
parser_d.add_argument("-background_set", dest="background_set", default="./data/1000_hs_gene.txt",
help="background set")
parser_d.add_argument("-saved_model_name", dest="saved_model_name", default="pretrained_gene",
help="load saved model to initialize explainer")
parser_d.add_argument("-output_name", dest="output_name", required = True,
help="output file name")
parser_d.add_argument("-seed", dest="seed",default = int(time.time()), type = int,
help="set seed")
args = parser.parse_args()
subparser_name = vars(args)['subparser_name']
seed_value= args.seed
os.environ['PYTHONHASHSEED']=str(seed_value)
random.seed(seed_value)
np.random.seed(seed_value)
tf.random.set_seed(seed_value)
from keras import backend as K
session_conf = tf.compat.v1.ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=1)
sess = tf.compat.v1.Session(graph=tf.compat.v1.get_default_graph(), config=session_conf)
tf.compat.v1.keras.backend.set_session(sess)
def annot(data,annotation):
combined = data.merge(annotation, how='left', on='gene_id')
if 'label' in combined.columns:
x = combined.drop(['gene_id','label','type'],axis =1)
y = combined.drop_duplicates(subset = ['variant_id','label','type'])
else:
x = combined.drop(['gene_id','type'],axis =1)
y = combined.drop_duplicates(subset = ['variant_id','type'])
return (x,y)
def padding(data):
padded_inputs = []
num_col= len(data.columns)
num_feat = num_col-1
for id, df_id in data.groupby('variant_id',sort=False):
df =df_id.to_numpy(copy=True)
df1 = df.reshape(1,-1,num_col)
df2 = df1[:,:,1:]
tmp_padded_inputs = pad_sequences(df2, padding="post", maxlen=args.max_n_gene, dtype='float32')
padded_inputs.append(tmp_padded_inputs)
padded_inputs = np.vstack(padded_inputs)
return padded_inputs
if not os.path.exists('./training_history/'):
os.makedirs('./training_history/')
if not os.path.exists('./variant_score/'):
os.makedirs('./variant_score/')
if not os.path.exists('./gene_score/'):
os.makedirs('./gene_score/')
if not os.path.exists('./shap_value/'):
os.makedirs('./shap_value/')
def training(x, y, val_x, val_y,
model_name,
save_gene_model = False,
max_n_gene=100,
units_1=128,
units_2=64,
l2_reg=0.02,
dropout_rate=0.5,
learning_rate=3e-4,
batch_size=32,
epochs=1000,
patience=15):
num_feat = len(x.columns)-1
dtype = 'float32'
val_x_padded = padding(val_x)
train_x_padded = padding(x)
#DosaCNV main model
feature_input = Input(shape=(max_n_gene,num_feat),name="input_layer",dtype=dtype)
def generate_mask(x):
mask = tf.math.not_equal(tf.reduce_sum(x,axis=2),0)
return mask
gene_mask = Lambda(generate_mask,name='gene_mask')(feature_input)
hidden1 = Dense(units=units_1, name='hidden1', activation='relu',kernel_regularizer=regularizers.l2(l2 = l2_reg),
kernel_initializer='he_normal')(feature_input)
hidden2 =Dense(units=units_2, name='hidden2', activation='relu',kernel_regularizer=regularizers.l2(l2 = l2_reg),
kernel_initializer='he_normal')(hidden1)
drop = Dropout(dropout_rate ,name='drop')(hidden2)
gene_HI_risk = Dense(units=1, name='gene_HI_risk',activation='sigmoid')(drop)
HI_gene_predictor = Model(feature_input, gene_HI_risk, name = 'DosaCNV-HI')
def noisy_or_function(x):
gene_risk = tf.squeeze(x[0])
mask = tf.cast(x[1], dtype)
total_risk = 1 - tf.math.reduce_prod(1 - gene_risk*mask, axis=1)
return total_risk
total_risk = Lambda(noisy_or_function, name='total_risk')([gene_HI_risk, gene_mask])
model = Model(inputs=feature_input, outputs= total_risk, name="DosaCNV")
model.compile(optimizer = Adam(learning_rate=learning_rate),
loss= tf.keras.losses.BinaryCrossentropy(),metrics=['binary_accuracy','AUC'])
callback = tf.keras.callbacks.EarlyStopping(monitor='val_loss',
restore_best_weights=True,
patience=patience)
history = model.fit(train_x_padded,y['label'].values, epochs=epochs,
batch_size=batch_size, verbose = 1,
validation_data = (val_x_padded,val_y['label'].values),
callbacks=[callback])
pd.DataFrame(history.history).to_csv(r'' + './training_history/' + model_name
+ '_training_history.tsv',index=False, sep='\t',header = True)
model.save(r'' + './saved_model/' + model_name +'_deletion') #DosaCNV: variant-level model
#extract all layers from the main model except for the noisy-or pooling layer
config = HI_gene_predictor.get_config() #get the current model configuration
input_shape = config['layers'][0]['config']['batch_input_shape'] #modify the configuration (batch_size,max_n_gene,num_feat) to
new_input_shape = (input_shape[0], input_shape[-1]) #(batch_size,num_feat)
config['layers'][0]['config']['batch_input_shape'] = new_input_shape
hi_gene_score = tf.keras.Model().from_config(config) #create a new model from the modified configuration
for i in range(len(HI_gene_predictor.layers)):
hi_gene_score.layers[i].set_weights(HI_gene_predictor.layers[i].get_weights())
if save_gene_model == True:
hi_gene_score.save(r'' + './saved_model/' + model_name + '_gene') # DosaCNV-HI: gene-level model
return (model,hi_gene_score)
# training and saving variant and/or gene level models
if subparser_name == 'train':
train_index = pd.read_csv(args.train_index,sep=',')
val_index = pd.read_csv(args.val_index,sep=',')
annotation = pd.read_csv(args.annotation, sep=',')
train_x,train_y = annot(train_index,annotation)
val_x,val_y = annot(val_index,annotation)
model = training(train_x, train_y, val_x, val_y,
model_name = args.output_model_name,
save_gene_model = args.save_gene_model,
max_n_gene = args.max_n_gene,
learning_rate = args.learning_rate)
# variant-level prediction
elif subparser_name == 'predict-deletion':
del_index = pd.read_csv(args.input_index,sep=',')
annotation = pd.read_csv(args.annotation, sep=',')
x,y = annot(del_index,annotation)
del_model = tf.keras.models.load_model(r'' + './saved_model/' + args.saved_model_name)
del_score = del_model.predict(padding(x))
del_id = x.drop_duplicates(subset = ['variant_id'])['variant_id']
del_id = del_id.reset_index()
del_id = del_id.drop(['index'],axis =1)
prediction = pd.concat([del_id,pd.DataFrame(del_score,columns = ['DosaCNV_score'])],axis = 1)
pd.DataFrame(prediction).to_csv(r''+'./variant_score/'+ args.output_name +
'_score.tsv',index=False, sep='\t',header = True)
# gene-level prediction
elif subparser_name == 'predict-gene':
gene_input = pd.read_csv(args.input_index, sep=',')
gene_feature = gene_input.loc[:,gene_input.columns!= 'gene_id'].to_numpy()
gene_id = gene_input['gene_id']
gene_model = tf.keras.models.load_model(r'' + './saved_model/' + args.saved_model_name)
gene_score = gene_model.predict(gene_feature)
gene_score = pd.concat([gene_id,pd.DataFrame(gene_score,columns=['DosaCNV_HI_score'])],axis=1)
gene_score.to_csv(r'' + './gene_score/' + args.output_name + '_score.tsv',index=False, sep='\t',header = True)
# shap values for each gene across all features
elif subparser_name == 'explain-gene':
try:
import shap
except ImportError:
print("The 'shap' package is not installed. Please install it by running 'pip install shap' in your terminal.")
import sys
sys.exit(1)
explain_set = pd.read_csv(args.explain_set, sep=',')
explain_set_feature = explain_set.loc[:,explain_set.columns!= 'gene_id'].to_numpy()
gene_feat_names = explain_set.loc[:,explain_set.columns!= 'gene_id'].columns
explain_gene_id = explain_set['gene_id']
background_set = pd.read_csv(args.background_set, sep=',')
background_set_feature = background_set.loc[:,background_set.columns!= 'gene_id'].to_numpy()
background_gene_id = background_set['gene_id']
gene_model = tf.keras.models.load_model(r'' + './saved_model/' + args.saved_model_name)
explainer = shap.DeepExplainer(gene_model,background_set_feature)
shap_values = explainer.shap_values(explain_set_feature)
shap_values = np.array(shap_values).reshape((-1,len(explain_set.columns)-1))
shap_values_df = pd.concat([explain_gene_id,
pd.DataFrame(shap_values,columns=gene_feat_names)],axis=1)
shap_values_df.to_csv(r'' + './shap_value/' + args.output_name + '_shap.csv',index=False,sep=',',header=True)