-
Notifications
You must be signed in to change notification settings - Fork 99
/
gen_best_ep.py
85 lines (77 loc) · 4.1 KB
/
gen_best_ep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import os
from glob import glob
import numpy as np
from config import Config
config = Config()
eval_txts = sorted(glob('e_results/*_eval.txt'))
print('eval_txts:', [_.split(os.sep)[-1] for _ in eval_txts])
score_panel = {}
sep = '&'
metrics = ['sm', 'wfm', 'hce'] # we used HCE for DIS and wFm for others.
if 'DIS5K' not in config.task:
metrics.remove('hce')
for metric in metrics:
print('Metric:', metric)
current_line_nums = []
for idx_et, eval_txt in enumerate(eval_txts):
with open(eval_txt, 'r') as f:
lines = [l for l in f.readlines()[3:] if '.' in l]
current_line_nums.append(len(lines))
for idx_et, eval_txt in enumerate(eval_txts):
with open(eval_txt, 'r') as f:
lines = [l for l in f.readlines()[3:] if '.' in l]
for idx_line, line in enumerate(lines[:min(current_line_nums)]): # Consist line numbers by the minimal result file.
properties = line.strip().strip(sep).split(sep)
dataset = properties[0].strip()
ckpt = properties[1].strip()
if int(ckpt.split('--epoch_')[-1].strip()) < 0:
continue
targe_idx = {
'sm': [5, 2, 2, 5, 5, 2],
'wfm': [3, 3, 8, 3, 3, 8],
'hce': [7, -1, -1, 7, 7, -1]
}[metric][['DIS5K', 'COD', 'HRSOD', 'General', 'General-2K', 'Matting'].index(config.task)]
if metric != 'hce':
score_sm = float(properties[targe_idx].strip())
else:
score_sm = int(properties[targe_idx].strip().strip('.'))
if idx_et == 0:
score_panel[ckpt] = []
score_panel[ckpt].append(score_sm)
metrics_min = ['hce', 'mae']
max_or_min = min if metric in metrics_min else max
score_max = max_or_min(score_panel.values(), key=lambda x: np.sum(x))
good_models = []
for k, v in score_panel.items():
if (np.sum(v) <= np.sum(score_max)) if metric in metrics_min else (np.sum(v) >= np.sum(score_max)):
print(k, v)
good_models.append(k)
# Write
with open(eval_txt, 'r') as f:
lines = f.readlines()
info4good_models = lines[:3]
metric_names = [m.strip() for m in lines[1].strip().strip('&').split('&')[2:]]
testset_mean_values = {metric_name: [] for metric_name in metric_names}
for good_model in good_models:
for idx_et, eval_txt in enumerate(eval_txts):
with open(eval_txt, 'r') as f:
lines = f.readlines()
for line in lines:
if set([good_model]) & set([_.strip() for _ in line.split(sep)]):
info4good_models.append(line)
metric_scores = [float(m.strip()) for m in line.strip().strip('&').split('&')[2:]]
for idx_score, metric_score in enumerate(metric_scores):
testset_mean_values[metric_names[idx_score]].append(metric_score)
if 'DIS5K' in config.task:
testset_mean_values_lst = ['{:<4}'.format(int(np.mean(v_lst[:-1]).round())) if name == 'HCE' else '{:.3f}'.format(np.mean(v_lst[:-1])).lstrip('0') for name, v_lst in testset_mean_values.items()] # [:-1] to remove DIS-VD
sample_line_for_placing_mean_values = info4good_models[-2]
numbers_placed_well = sample_line_for_placing_mean_values.replace(sample_line_for_placing_mean_values.split('&')[1].strip(), 'DIS-TEs').strip().split('&')[3:]
for idx_number, (number_placed_well, testset_mean_value) in enumerate(zip(numbers_placed_well, testset_mean_values_lst)):
numbers_placed_well[idx_number] = number_placed_well.replace(number_placed_well.strip(), testset_mean_value)
testset_mean_line = '&'.join(sample_line_for_placing_mean_values.replace(sample_line_for_placing_mean_values.split('&')[1].strip(), 'DIS-TEs').split('&')[:3] + numbers_placed_well) + '\n'
info4good_models.append(testset_mean_line)
info4good_models.append(lines[-1])
info = ''.join(info4good_models)
print(info)
with open(os.path.join('e_results', 'eval-{}_best_on_{}.txt'.format(config.task, metric)), 'w') as f:
f.write(info + '\n')