-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTron.pde
412 lines (374 loc) · 17.3 KB
/
Tron.pde
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
import com.evo.NEAT.*;
import com.evo.NEAT.com.evo.NEAT.config.*;
import examples.*;
//The game used for playing against a human or an ai. Not for training. This constructor is not actually used and just prevents null errors.
GamePlay game = new GamePlay(new AIPlayerController(new Genome()), new HumanController2());
//The number of generations to train each time the button is clicked.
final int TRAIN_GENERATIONS = 250;
int targetGenerations = 0; //How many generations for the training to go until on the next target.
//How long before the generation times out. 3000 frames = 50 seconds.
final int TIME_OUT = 3000;
//Allows game modes
final int menue = 0; //Choosing another game mode
final int trainAI = 1; //Runs the AI through several generations to prep it.
final int playAI = 2; //Allows the player to go against the best AI
final int playPlayer = 3; //Allows a player to go against another player.
final int aiSurvival = 4; //A testing mode for the AI surviving against itself.
int gameMode = 0; //Current Game Mode.
//EvoNeat handling
Pool pool; //The pool of genomes.
Genome topGenome; //The current best genome.
final int genStart = 0; //Indicates a generation has started and needs to have games created
final int genRun = 1; //Indicates games are created and are running
final int genFinish = 2; //Indicates all games are done and we should set up for the next gen.
int genState = genStart; //Current state
int generation = 0; //Current gen starts at 0.
//A list of all games the AIs will train in.
public ArrayList<GamePlay> trainingGames = new ArrayList<GamePlay>();
//How many times each colour has won in training this generation.
int redWins = 0;
int blueWins = 0;
int commonLosses = 0;
//Because we need to check if a key is being pressed at any time, this lets us store that information using only the pressed and released events.
HashMap<Integer, Boolean> keypress = new HashMap<Integer, Boolean>();
//Buttons to be used. Must be global because the mousePress method must be able to access them
//Menue buttons allow choosing the game modes.
Button playUsr = new Button(new PVector(1600/2-75, 350), 150, 50, "Play Live");
Button playTopAI = new Button(new PVector(1600/2-75, 425), 150, 50, "Play AI");
Button aiTraining = new Button(new PVector(1600/2-75, 500), 150, 50, "Train AI");
Button survival = new Button(new PVector(1600/2-75, 575), 150, 50, "AI Survival");
//Buttons to show at the end of the game so you can play again.
Button playAgain = new Button(new PVector(1600/2-75, 750), 150, 50, "Play Again");
Button back = new Button(new PVector(1600/2-75, 825), 150, 50, "Go Back");
//Button in training to stop training after the current generation ends.
Button stopTraining = new Button(new PVector(100, 50), 150, 50, "Stop Training");
//Sets up the basics of the program.
void setup(){
size(1600, 900, FX2D); //FX2D = Better performance
rectMode(CORNER); //For consistency
ellipseMode(CORNER);
frameRate(60);
NEAT_Config.setINPUTS(8); //Indicates that each neural network will take 8 inputs for Tron by default.
pool = new Pool(); //Initalize EvoNeat so it will work
pool.initializePool();
topGenome = new Genome(); //topGenome is the one the player will go against if they choose to play against an ai.
}
//The length of time this generation has run for.
//Used to time out the generation
float genTime = 0.0F;
void draw(){
background(0); //Default to black screen.
if(gameMode == 0){
//Draw menue.
//Draws the title to the screen. Duplicate text creates a cool shadow effect.
fill(0, 0, 255);
textSize(124);
text("TRON", 1600/2-175, 200);
fill(0);
textSize(120);
text("TRON", 1600/2-175, 200);
//Update each of the buttons and then draw them to the screen.
playUsr.isMouseOver(mouseX, mouseY);
playUsr.show();
playTopAI.isMouseOver(mouseX, mouseY);
playTopAI.show();
aiTraining.isMouseOver(mouseX, mouseY);
aiTraining.show();
survival.isMouseOver(mouseX, mouseY);
survival.show();
//End menue drawing.
}else if(gameMode == 1){ //Runs the ai training system for a specified number of generations
trainAI();
}else if(gameMode == 2 || gameMode == 3){ //Whether you're playing an ai or a human this just updates the game.
playGame();
}else if(gameMode == 4){
trainSurvival();
}
}
void mousePressed() { //Mouse pressed event to handle buttons.
if (playUsr.isMouseOver(mouseX, mouseY)) { //If the mouse is pressed
game = new GamePlay(new HumanPlayerController(), new HumanController2()); //Set up for a game and run it.
gameMode = playPlayer;
}else if (playTopAI.isMouseOver(mouseX, mouseY)) { //If the player chose ai
System.out.println("Playing AI with fitness " + topGenome.getPoints()); //Tell us what ai they are playing against
game = new GamePlay(new HumanPlayerController(), new AIPlayerController(topGenome)); //And then run the game.
gameMode = playAI;
}else if(aiTraining.isMouseOver(mouseX, mouseY)){
targetGenerations += TRAIN_GENERATIONS; //We need to train for TRAIN_GENERATIONS more generations.
NEAT_Config.setINPUTS(8); //Indicates that each neural network will take 6 inputs.
gameMode = trainAI; //Then run it.
}else if(playAgain.mouseOver){
game.playAgain(); //Allows playing again at the end of the game.
playAgain.mouseOver = false;
}else if(back.mouseOver){
gameMode = menue; //Allows returning to the main menue after a game.
back.mouseOver = false;
}else if(stopTraining.mouseOver){
targetGenerations = generation; //Ends the training at the current generation and then returns to the menue.
stopTraining.mouseOver = false;
}else if(survival.isMouseOver(mouseX, mouseY)){
initGenetics();
targetSurvival += TRAIN_GENERATIONS;
gameMode = aiSurvival;
}else if(stopSurvival.mouseOver){
targetSurvival = survivalGen;
stopSurvival.mouseOver = false;
}
}
//For 1v1 games just updates and draws the game.
void playGame(){
game.update();
game.show();
}
//Handles ai training.
void trainAI(){
//Check if the button to stop training has been pressed
stopTraining.isMouseOver(mouseX, mouseY);
stopTraining.show();
fill(255);
text("Generation: " + generation + " target " + targetGenerations, 100, 25);
if(genState == genStart){ //If games have not been initialized yet.
ArrayList<Genome> allGenomes = pool.getAllGenomes(); //Init all games.
trainingGames.clear();
for(int i = 0; i+1 < allGenomes.size(); i+=2){ //Count by 2 and
trainingGames.add(new GamePlay(new AIPlayerController(allGenomes.get(i)), new AIPlayerController(allGenomes.get(i+1)))); //Add genomes to a game
}
System.out.println("Generation " + generation + " started"); //Tell us where we are.
genTime = 0; //Set time to 0 so we can keep track how long this takes.
genState = genRun; //We are done setup so begin running.
redWins = 0;
blueWins = 0;
commonLosses = 0;
}else if(genState == genRun){ //If we are running
//System.out.println("Red wins are " + redWins + " blue wins " + blueWins);
genTime++; //Increment time
boolean gamesInProgress = false; //Stores if any games are happening
for(GamePlay training : trainingGames){ //Update each game
if(training.currentState == 1){ //If the game is playing
gamesInProgress = true; //At least one game is running
training.update(); //Doesn't run logic on ended games so that it improves performance.
training.show();
}else if((training.currentState == 2 || training.currentState == 3 || training.currentState == 4) && training.scored == false){ //If a game is done then apply fitness logic to it.
AIPlayerController user = (AIPlayerController)training.user.controller; //Get the genome controllers
AIPlayerController opp = (AIPlayerController)training.opponent.controller;
if(training.currentState == 2){ //If the user won
user.brain.setFitness((100000-genTime)*training.user.getTurnsMade()*(training.user.getDistance()/2)); //Set fitness accordingly
opp.brain.setFitness(genTime/2*training.opponent.getTurnsMade()*(training.opponent.getDistance()/2));
blueWins++;
}else if(training.currentState == 3){ //The opponent won.
opp.brain.setFitness((100000-genTime)*training.opponent.getTurnsMade()*(training.opponent.getDistance()/2));
user.brain.setFitness(genTime/2*training.user.getTurnsMade()*(training.user.getDistance()/2));
redWins++;
}else if(training.currentState == 4){ //Both players lost
opp.brain.setFitness(genTime/2*training.opponent.getTurnsMade()*(training.opponent.getDistance()/2)); //Functionally a loss
user.brain.setFitness(genTime/2*training.user.getTurnsMade()*(training.user.getDistance()/2));
commonLosses++;
}
training.scored = true;
}
}
if(!gamesInProgress){ //If all games are done
System.out.println("Ending current generation."); //End this generation and start the next.
genState = genFinish;
}else if(genTime > TIME_OUT){ //Otherwise if the current games have timed out
System.out.println("Generation time out.");
for(GamePlay training : trainingGames){ //Any games in progress get updated
if(training.currentState == 1){
AIPlayerController user = (AIPlayerController)training.user.controller;
AIPlayerController opp = (AIPlayerController)training.opponent.controller;
user.brain.setFitness(0); //Set fitness to 0 so they do not reproduce.
opp.brain.setFitness(0);
commonLosses++;
}
}
genState = genFinish; //Then end this generation.
}
}else if(genState == genFinish){ //If the generation has ended.
pool.evaluateFitness(new notMuch()); //This is just to make the api work and has no functional benefit.
System.out.println("Generation " + generation + " top fitness: " + pool.getTopGenome().getPoints()); //Tell us our fitness.
System.out.println("Generation statistics: Red Wins " + redWins + " Blue Wins: " + blueWins + " No Win Games: " + commonLosses);
topGenome = pool.getTopGenome(); //Update the top genome
pool.breedNewGeneration(); //Breed new gen
generation++; //Increment gen
genState = genStart;
if(generation > targetGenerations){ //If we have made it to our target number of generations
gameMode = menue; //Go back to the menue.
}
}
}
//Handles keyboard input smoothly
//Stores the value of a key to be pressed so we can check it later.
void keyPressed() {
//System.out.println("Key Pressed " + keyCode);
keypress.put(Integer.valueOf(keyCode), Boolean.valueOf(true));
}
//Indicates a key has been released so it does not show up later.
void keyReleased(){
keypress.put(Integer.valueOf(keyCode), Boolean.valueOf(false));
}
//Allows checking for keypresses to be asynchronous rither than recieving the event thread in keyPressed/keyReleased.
boolean keyIsDown(int checkKey){
if(keypress.containsKey(Integer.valueOf(checkKey))){ //Check if the key has been pressed. Otherwise we might get a nullPointerException.
return keypress.get(Integer.valueOf(checkKey));
}else{
return false;
}
}
//Game state runs a game between two player controllers.
public class GamePlay{
final int gameStart = 0; //Gamestates for easy tracking.
final int gameRun = 1;
final int winUser = 2;
final int winOpp = 3;
final int loseBoth = 4;
int currentState = gameStart; //Our current state.
//The walls around the edge of the field.
ArrayList<Wall> walls = new ArrayList<Wall>();
//Particles to play when someone dies.
ParticleSystem diedParticles = new ParticleSystem(new PVector(0, 0), new PVector(0, 0), 0, color(0));
Player user; //Players in the game currently
Player opponent;
public boolean scored = false; //Used for training to see if the game has already been evaluated.
//Create a game and set who is controlling each player.
public GamePlay(PlayerController p1, PlayerController p2){
//Creates players and sets up other info.
user = new Player(new PVector(100, 450), p1, color(0, 0, 255));
opponent = new Player(new PVector(1500, 450), p2, color(255, 0, 0));
//We are running
currentState = gameRun;
//Define walls
walls.add(new Wall(new PVector(0, 0), 1600, 5));
walls.add(new Wall(new PVector(0, 0), 5, 900));
walls.add(new Wall(new PVector(1600, 0), 5, 900));
walls.add(new Wall(new PVector(0, 900), 1600, 5));
//Finish variables.
user.enemy = opponent;
opponent.enemy = user;
}
public void update(){ //Updates logic
if(currentState == gameRun){ //If the game is still running
user.update(); //Move and update players
opponent.update();
//System.out.println("Position Up: " + getDistanceUp(user) + " down: " + getDistanceDown(user) + " left: " + getDistanceLeft(user) + " right: " + getDistanceRight(user));
//Prevent head on collisions
if(user.impactPlayer(opponent)){
diedParticles = new ParticleSystem(user.position.copy(), new PVector(0, 0), 50, color(255, 255, 255));
opponent.die();
user.die();
currentState = loseBoth;
}else if(user.impactTrail(opponent) || collideWalls(opponent) || opponent.impactOwnTrail()){ //Check each of the losing conditions. Hitting a wall, hitting your opponents trail, hitting your own trail.
diedParticles = new ParticleSystem(opponent.position.copy(), opponent.velocity, 50, opponent.col);
opponent.die();
currentState = winUser;
}else if(opponent.impactTrail(user) || collideWalls(user) || user.impactOwnTrail()){ //Same but for the other player.
diedParticles = new ParticleSystem(user.position.copy(), user.velocity, 50, user.col);
user.die();
currentState = winOpp;
}
//Checks if the game has ended
}else if((gameMode == playPlayer || gameMode == playAI) && (currentState == winOpp || currentState == winUser || currentState == loseBoth)){
//Update and show the end game buttons.
playAgain.isMouseOver(mouseX, mouseY);
playAgain.show();
back.isMouseOver(mouseX, mouseY);
back.show();
}
//Runs the death particles always so they don't get removed unintentionally.
diedParticles.run();
}
//Resets the game so the player can play again.
public void playAgain(){
//Reset the player
user = new Player(new PVector(100, 450), new HumanPlayerController(), color(0, 0, 255));
if(gameMode == playAI){ //If the opponent is an ai set it to be an ai
opponent = new Player(new PVector(1500, 450), new AIPlayerController(topGenome), color(255, 0, 0));
}else{ //Otherwise set it as a human controller.
opponent = new Player(new PVector(1500, 450), new HumanController2(), color(255, 0, 0));
}
//Finish arguments in reset.
user.enemy = opponent;
opponent.enemy = user;
currentState = gameRun;
}
//Draws the game to the screen
public void show(){
user.show(); //by drawing the players to the screen.
opponent.show();
}
//Checks if the player has collided with a wall
boolean collideWalls(Collider check){
for(Wall wall : walls){ //For each wall
if(collides(wall, check)){ //See if it collides
return true; //If it has say so
}
}
return false; //Otherwise don't.
}
//This uses ray tracing to give the ai systems "sight" on their distance from colliders.
public float getDistanceUp(Player player){
Wall test = new Wall(new PVector(player.position.x, player.position.y-21), 20, 1); //Something to move which can check collisions
if(player.position.y-21 <= 0){
return 0;
}
float distance = 0; //How far we've gone so far
while(distance < 500){ //Only go to 500 otherwise performance suffers
if(collideWalls(test) || user.impactTrail(test) || opponent.impactTrail(test)){ //Each of these mean a loss
return distance; //Return how far until we die
}
distance++; //Otherwise increment and move wall
test.position.y-=1;
}
return distance;
}
//Repeated in all 4 directions.
public float getDistanceDown(Player player){
Wall test = new Wall(new PVector(player.position.x, player.position.y+21), 20, 1);
if(player.position.y+21 >= 900){
return 0;
}
float distance = 0;
while(distance < 500){
if(collideWalls(test) || user.impactTrail(test) || opponent.impactTrail(test)){
return distance;
}
distance++;
test.position.y+=1;
}
return distance;
}
public float getDistanceLeft(Player player){
Wall test = new Wall(new PVector(player.position.x-21, player.position.y), 1, 20);
if(player.position.x-21 <= 0){
return 0;
}
float distance = 0;
while(distance < 500){
if(collideWalls(test) || user.impactTrail(test) || opponent.impactTrail(test)){
return distance;
}
distance++;
test.position.x-=1;
}
return distance;
}
public float getDistanceRight(Player player){
Wall test = new Wall(new PVector(player.position.x+21, player.position.y), 1, 20);
if(player.position.x+21 >= 1600){
return 0;
}
float distance = 0;
while(distance < 500){
if(collideWalls(test) || user.impactTrail(test) || opponent.impactTrail(test)){
return distance;
}
distance++;
test.position.x+=1;
}
return distance;
}
}
public class notMuch implements Environment{
public void evaluateFitness(ArrayList<Genome> population){
//Nope
}
}