-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
309 lines (265 loc) · 14.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import argparse
import datetime
import os
import pickle
import time
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as transforms
from tensorboardX import SummaryWriter
from torch import distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torchvision.utils import make_grid
from tqdm import tqdm, trange
from data.cocostuff_loader import *
from data.vg import *
import data as data_util
from model.rcnn_discriminator import *
from model.resnet_generator import *
from model.sync_batchnorm import DataParallelWithCallback
from utils.logger import setup_logger
from utils.util import *
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = False
def get_dataset(dataset, img_size):
if dataset == "coco":
data = CocoSceneGraphDataset(image_dir='./datasets/coco/train2017/',
instances_json='./datasets/coco/annotations/instances_train2017.json',
stuff_json='./datasets/coco/annotations/stuff_train2017.json',
stuff_only=True, image_size=(img_size, img_size), left_right_flip=True)
elif dataset == 'vg':
with open("./datasets/vg/vocab.json", "r") as read_file:
vocab = json.load(read_file)
data = VgSceneGraphDataset(vocab=vocab, h5_path='./datasets/vg/train.h5',
image_dir='./datasets/vg/images/',
image_size=(img_size, img_size), max_objects=10, left_right_flip=True)
return data
def keyword_dict(model, keyword):
return {name: param.mean() for name, param in model.named_parameters() if keyword in name}
def target_dict(model, target, keywords):
return {x:getattr(y, target) for x,y in model.named_modules() if any(x.endswith(k) for k in keywords) }
def main(args):
# parameters
img_size = args.img_size
assert img_size in [64, 128, 256, 512]
z_dim = 128 # z_img
lamb_obj = 1.0
lamb_img = 0.1
num_classes = 184 if args.dataset == 'coco' else 179
# train D only in the first {DELAY_G_TRAIN} iters of each epoch
DELAY_G_TRAIN = 30
# data loader
train_data = get_dataset(args.dataset, img_size)
train_sampler = torch.utils.data.distributed.DistributedSampler(train_data)
train_dataloader = torch.utils.data.DataLoader(
train_data, batch_size=args.batch_size, sampler=train_sampler,
drop_last=True, num_workers=1)
val_dataset = data_util.get_dataset(args.dataset, img_size, left_right_flip=False, train=False) if dist.get_rank() == 0 else None
val_dataloader = torch.utils.data.DataLoader(val_dataset, batch_size=4, drop_last=False, shuffle=True, num_workers=1) if dist.get_rank()==0 else None
# Load model
netG = globals()[f'ResnetGenerator{img_size}'](num_classes=num_classes, output_dim=3).cuda()
netD = globals()[f'CombineDiscriminator{img_size}'](num_classes=num_classes).cuda()
# use DDP
parallel = True
if parallel:
process_group = dist.new_group(list(range(dist.get_world_size())))
if dist.get_world_size() > 1:
netG = nn.SyncBatchNorm.convert_sync_batchnorm(netG, process_group)
netG = DDP(netG, device_ids=[args.local_rank])
netD = DDP(netD, device_ids=[args.local_rank])
if dist.get_rank()==0:
# to record hidden features
G_recorder = HiddenFeatureRecoder(netG)
D_recorder = HiddenFeatureRecoder(netD)
g_lr, d_lr = args.g_lr, args.d_lr
gen_parameters = []
for key, value in dict(netG.named_parameters()).items():
if value.requires_grad:
if 'mapping' in key or "rho" in key:
gen_parameters += [{'params': [value], 'lr': g_lr * 0.1}]
else:
gen_parameters += [{'params': [value], 'lr': g_lr}]
# beta1 = 0 beta2=0.999
g_optimizer = torch.optim.Adam(gen_parameters, betas=(0, 0.999))
# use scheduler to reduce the learning rate to 0.1 & 0.01 in [milestones]
milestones = [120, 160]
g_scheduler = torch.optim.lr_scheduler.MultiStepLR(g_optimizer, milestones)
dis_parameters = []
for key, value in dict(netD.named_parameters()).items():
if value.requires_grad:
if 'alpha' in key:
dis_parameters += [{'params': [value], 'lr': d_lr * 0.2}]
else:
dis_parameters += [{'params': [value], 'lr': d_lr}]
d_optimizer = torch.optim.Adam(dis_parameters, betas=(0, 0.999))
d_scheduler = torch.optim.lr_scheduler.MultiStepLR(d_optimizer, milestones)
if dist.get_rank()==0:
# make dirs
if not os.path.exists(args.out_path):
print('mkdir args.out_path')
os.makedirs(args.out_path)
if not os.path.exists(os.path.join(args.out_path, 'model/')):
os.mkdir(os.path.join(args.out_path, 'model/'))
writer = SummaryWriter(os.path.join(args.out_path, 'log'))
logger = setup_logger("LAMA", args.out_path, 0)
logger.info(netG)
logger.info(netD)
g_loss, g_loss_fake, g_loss_obj, g_out_fake, g_out_obj = [torch.tensor(0.0)]*5
start_time = time.time()
epochs = trange(args.total_epoch) if dist.get_rank()==0 else range(args.total_epoch)
for epoch in epochs:
netG.train()
netD.train()
e_loader = enumerate(train_dataloader)
e_loader = tqdm(e_loader, leave=False) if dist.get_rank()==0 else e_loader
for idx, data in e_loader:
real_images, label, bbox = data
label, bbox = label.long().unsqueeze(-1), bbox.float()
# update D network
netD.zero_grad()
d_out_real, d_out_robj = netD(real_images, bbox, label)
d_loss_real = F.relu(1.0 - d_out_real).mean()
d_loss_robj = F.relu(1.0 - d_out_robj).mean()
z = torch.randn(real_images.size(0), bbox.size(1), z_dim)
fake_images = netG(z, bbox, y=label.squeeze(dim=-1))
d_out_fake, d_out_fobj = netD(fake_images.detach(), bbox, label)
d_loss_fake = F.relu(1.0 + d_out_fake).mean()
d_loss_fobj = F.relu(1.0 + d_out_fobj).mean()
d_loss = lamb_obj * (d_loss_robj + d_loss_fobj) + lamb_img * (d_loss_real + d_loss_fake)
d_loss.backward()
d_optimizer.step()
# update G network
if (idx % 1) == 0 and idx > DELAY_G_TRAIN:
netG.zero_grad()
g_out_fake, g_out_obj = netD(fake_images, bbox, label)
g_loss_fake = - g_out_fake.mean()
g_loss_obj = - g_out_obj.mean()
g_loss = g_loss_obj * lamb_obj + g_loss_fake * lamb_img
g_loss.backward()
g_optimizer.step()
if dist.get_rank()==0:
iterations = epoch * len(train_dataloader) + idx + 1
if (idx % 10) == 0:
writer.add_scalar("D/d_loss", d_loss.item(), iterations)
writer.add_scalars("D/d_loss_realfake",
{"real": d_loss_real.item(), "fake": d_loss_fake.item()}, iterations)
writer.add_scalars("D/d_loss_obj",
{"real": d_loss_robj.item(), "fake": d_loss_fobj.item()}, iterations)
writer.add_scalars("D/d_out_realfake",
{"real": d_out_real.mean().item(),
"fake": d_out_fake.mean().item(),
"gap": d_out_real.mean().item()-d_out_fake.mean().item()}, iterations)
writer.add_scalars("D/d_out_obj",
{"real": d_out_robj.mean().item(),
"fake": d_out_fobj.mean().item(),
"gap": d_out_robj.mean().item()-d_out_fobj.mean().item()}, iterations)
writer.add_scalar("G/g_loss", g_loss.item(), iterations)
writer.add_scalar("G/g_loss_fake", g_loss_fake.item(), iterations)
writer.add_scalar("G/g_loss_obj", g_loss_obj.item(), iterations)
writer.add_scalar("G/g_out_fake", g_out_fake.mean().item(), iterations)
writer.add_scalar("G/g_out_obj", g_out_obj.mean().item(), iterations)
writer.add_scalars('G/rho', keyword_dict(netG, 'rho'), iterations)
# record hidden features with hooks
if idx == DELAY_G_TRAIN+1:
G_recorder.hook()
D_recorder.hook()
elif idx == DELAY_G_TRAIN+2:
G_recorder.write(writer, "netG", epoch)
D_recorder.write(writer, "netD", epoch)
G_recorder.remove()
D_recorder.remove()
if (idx+1) % 500 == 0:
elapsed = time.time() - start_time
elapsed = str(datetime.timedelta(seconds=elapsed))
logger.info("Time Elapsed: [{}]".format(elapsed))
logger.info("Step[{}/{}], d_out_real: {:.4f}, d_out_fake: {:.4f}, g_out_fake: {:.4f} ".format(epoch + 1,
idx + 1,
d_loss_real.item(),
d_loss_fake.item(),
g_loss_fake.item()))
logger.info(" d_obj_real: {:.4f}, d_obj_fake: {:.4f}, g_obj_fake: {:.4f} ".format(
d_loss_robj.item(),
d_loss_fobj.item(),
g_loss_obj.item()))
# record learning rate
writer.add_scalar("LR/d_lr", d_scheduler.get_last_lr()[0], iterations)
writer.add_scalar("LR/g_lr", g_scheduler.get_last_lr()[0], iterations)
# record images
writer.add_image("images/real images", make_grid(real_images.cpu().data * 0.5 + 0.5, nrow=4), iterations)
writer.add_image("images/fake images", make_grid(fake_images.cpu().data * 0.5 + 0.5, nrow=4), iterations)
# record epoch
writer.add_scalar("Time/epoch", epoch, iterations)
# report alpha and weights
writer.add_scalars(
'D/alpha', keyword_dict(netD, 'alpha'), iterations)
G_alpha = keyword_dict(netG, 'alpha')
writer.add_scalars('G/alpha', G_alpha, iterations)
writer.add_scalars('G/res_alpha',
{k:v for k, v in G_alpha.items() if "module.res" in k}, iterations)
writer.add_scalars('G/mask_alpha',
{k:v for k, v in G_alpha.items() if "module.mask" in k}, iterations)
writer.add_scalars('G/noise_weight_mean',
{k:F.softplus(v) for k, v in keyword_dict(netG, 'noise_weight_seed').items()}, iterations)
# end one epoch
if dist.get_rank()==0:
# record weights
write_weights_grad(writer, netG, prefix='G', step=epoch)
write_weights_grad(writer, netD, prefix='D', step=epoch)
# record the avg training time of one epoch
writer.add_scalar("Time/epoch_avg", (time.time()-start_time)/(epoch+1), epoch)
out_real_val, out_robj_val = [], []
# record output of D on validation dataset
for idx, val_data in tqdm(enumerate(val_dataloader), desc='validation'):
real_images, label, bbox = val_data
with torch.no_grad():
d_out_real_val, d_out_robj_val = netD(real_images, bbox, label)
out_real_val.append(d_out_real_val.detach().cpu())
out_robj_val.append(d_out_robj_val.detach().cpu())
if idx > 128:
break
avg_real_val = torch.cat(out_real_val, dim=0)
avg_robj_val = torch.cat(out_robj_val, dim=0)
writer.add_scalars("D/d_img_comparison",
{"real_train": d_out_real.mean().item(),
"fake_train": d_out_fake.mean().item(),
"real_val": avg_real_val.mean().item(),
}, epoch)
writer.add_scalars("D/d_obj_comparison",
{"robj_train": d_out_robj.mean().item(),
"fobj_train": d_out_fobj.mean().item(),
"robj_val": avg_robj_val.mean().item()
}, epoch)
# save model
if (epoch + 1) % 5 == 0:
save_path = os.path.join(args.out_path, 'model/', 'G_%d.pth' % (epoch+1))
torch.save(netG.state_dict(), save_path)
# use scheduler
g_scheduler.step()
d_scheduler.step()
# end whole training
if dist.get_rank()==0:
writer.flush()
writer.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='coco',
help='training dataset')
parser.add_argument('--batch_size', type=int, default=128,
help='mini-batch size of training data. Default: 128')
parser.add_argument('--total_epoch', type=int, default=200,
help='number of total training epoch')
parser.add_argument('--d_lr', type=float, default=0.0003,
help='learning rate for discriminator')
parser.add_argument('--g_lr', type=float, default=0.0001,
help='learning rate for generator')
parser.add_argument('--out_path', type=str, default='./outputs/',
help='path to output files')
parser.add_argument('--img_size', type=int, default=128, help='image size')
parser.add_argument('--local_rank', default=-1, type=int,
help='node rank for distributed training')
args = parser.parse_args()
dist.init_process_group(backend='nccl')
torch.cuda.set_device(args.local_rank)
main(args)