forked from ikostrikov/pytorch-a2c-ppo-acktr-gail
-
Notifications
You must be signed in to change notification settings - Fork 9
/
train.py
executable file
·437 lines (389 loc) · 21.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
import os, sys, time, copy, glob
from collections import deque
import gym
from gym import spaces
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from ppo.a2c_ppo_acktr import algo
from ppo.a2c_ppo_acktr.arguments import get_args
from ppo.a2c_ppo_acktr.envs import make_vec_envs
from ppo.a2c_ppo_acktr.model import Policy
from ppo.a2c_ppo_acktr.storage import RolloutStorage
from ppo.a2c_ppo_acktr.utils import get_vec_normalize, update_linear_schedule
from ppo.a2c_ppo_acktr.visualize import visdom_plot
args = get_args()
assert args.algo in ['a2c', 'ppo', 'acktr']
if args.recurrent_policy:
assert args.algo in ['a2c', 'ppo'], \
'Recurrent policy is not implemented for ACKTR'
if args.num_rollouts == 0:
# Find a number of rollouts such that num_rollouts % num_processes == 0 and num_rollouts >= 30
while args.num_rollouts < 30:
args.num_rollouts += args.num_processes
if args.num_rollouts > 0:
assert args.num_rollouts % args.num_processes == 0, 'num_rollouts must be divisable by num_processes'
num_updates = int(args.num_env_steps) // args.num_steps // args.num_processes
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
if args.cuda and torch.cuda.is_available() and args.cuda_deterministic:
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
try:
os.makedirs(args.log_dir)
except OSError:
files = glob.glob(os.path.join(args.log_dir, '*.monitor.csv'))
try:
for f in files:
os.remove(f)
except PermissionError as e:
pass
eval_log_dir = args.log_dir + "_eval"
try:
os.makedirs(eval_log_dir)
except OSError:
files = glob.glob(os.path.join(eval_log_dir, '*.monitor.csv'))
try:
for f in files:
os.remove(f)
except PermissionError as e:
pass
def main():
torch.set_num_threads(1)
device = torch.device("cuda:0" if args.cuda else "cpu")
if args.vis:
from visdom import Visdom
viz = Visdom(port=args.port)
win = None
envs = make_vec_envs(args.env_name, args.seed, 1,
args.gamma, args.log_dir, args.add_timestep, device, False)
# Determine if this is a dual robot (multi agent) environment.
obs = envs.reset()
action = torch.tensor([envs.action_space.sample()])
_, _, _, info = envs.step(action)
dual_robots = 'dual_robots' in info[0]
if dual_robots:
obs_robot_len = info[0]['obs_robot_len'] // 2
action_robot_len = info[0]['action_robot_len'] // 2
obs_robot1 = obs[:, :obs_robot_len]
obs_robot2 = obs[:, obs_robot_len:]
if len(obs_robot1[0]) != obs_robot_len or len(obs_robot2[0]) != obs_robot_len:
print('robot 1 obs shape:', len(obs_robot1[0]), 'obs space robot shape:', (obs_robot_len,))
print('robot 2 obs shape:', len(obs_robot2[0]), 'obs space robot shape:', (obs_robot_len,))
exit()
envs = make_vec_envs(args.env_name, args.seed, args.num_processes,
args.gamma, args.log_dir, args.add_timestep, device, False)
if dual_robots:
# Reset environment
obs = envs.reset()
obs_robot1 = obs[:, :obs_robot_len]
obs_robot2 = obs[:, obs_robot_len:]
action_space_robot1 = spaces.Box(low=np.array([-1.0]*action_robot_len), high=np.array([1.0]*action_robot_len), dtype=np.float32)
action_space_robot2 = spaces.Box(low=np.array([-1.0]*action_robot_len), high=np.array([1.0]*action_robot_len), dtype=np.float32)
if args.load_policy is not None:
if dual_robots:
actor_critic_robot1, actor_critic_robot2, ob_rms = torch.load(args.load_policy)
else:
actor_critic, ob_rms = torch.load(args.load_policy)
vec_norm = get_vec_normalize(envs)
if vec_norm is not None:
vec_norm.ob_rms = ob_rms
else:
if dual_robots:
actor_critic_robot1 = Policy([obs_robot_len], action_space_robot1,
base_kwargs={'recurrent': args.recurrent_policy})
actor_critic_robot2 = Policy([obs_robot_len], action_space_robot2,
base_kwargs={'recurrent': args.recurrent_policy})
else:
actor_critic = Policy(envs.observation_space.shape, envs.action_space,
base_kwargs={'recurrent': args.recurrent_policy})
if dual_robots:
actor_critic_robot1.to(device)
actor_critic_robot2.to(device)
else:
actor_critic.to(device)
if args.algo == 'a2c':
agent = algo.A2C_ACKTR(actor_critic, args.value_loss_coef,
args.entropy_coef, lr=args.lr,
eps=args.eps, alpha=args.alpha,
max_grad_norm=args.max_grad_norm)
elif args.algo == 'ppo':
if dual_robots:
agent_robot1 = algo.PPO(actor_critic_robot1, args.clip_param, args.ppo_epoch, args.num_mini_batch,
args.value_loss_coef, args.entropy_coef, lr=args.lr,
eps=args.eps,
max_grad_norm=args.max_grad_norm)
agent_robot2 = algo.PPO(actor_critic_robot2, args.clip_param, args.ppo_epoch, args.num_mini_batch,
args.value_loss_coef, args.entropy_coef, lr=args.lr,
eps=args.eps,
max_grad_norm=args.max_grad_norm)
else:
agent = algo.PPO(actor_critic, args.clip_param, args.ppo_epoch, args.num_mini_batch,
args.value_loss_coef, args.entropy_coef, lr=args.lr,
eps=args.eps,
max_grad_norm=args.max_grad_norm)
elif args.algo == 'acktr':
agent = algo.A2C_ACKTR(actor_critic, args.value_loss_coef,
args.entropy_coef, acktr=True)
if dual_robots:
rollouts_robot1 = RolloutStorage(args.num_steps, args.num_rollouts if args.num_rollouts > 0 else args.num_processes,
[obs_robot_len], action_space_robot1,
actor_critic_robot1.recurrent_hidden_state_size)
rollouts_robot2 = RolloutStorage(args.num_steps, args.num_rollouts if args.num_rollouts > 0 else args.num_processes,
[obs_robot_len], action_space_robot2,
actor_critic_robot2.recurrent_hidden_state_size)
if args.num_rollouts > 0:
rollouts_robot1.obs[0].copy_(torch.cat([obs_robot1 for _ in range(args.num_rollouts // args.num_processes)] + [obs_robot1[:(args.num_rollouts % args.num_processes)]], dim=0))
rollouts_robot2.obs[0].copy_(torch.cat([obs_robot2 for _ in range(args.num_rollouts // args.num_processes)] + [obs_robot2[:(args.num_rollouts % args.num_processes)]], dim=0))
else:
rollouts_robot1.obs[0].copy_(obs_robot1)
rollouts_robot2.obs[0].copy_(obs_robot2)
rollouts_robot1.to(device)
rollouts_robot2.to(device)
else:
rollouts = RolloutStorage(args.num_steps, args.num_rollouts if args.num_rollouts > 0 else args.num_processes,
envs.observation_space.shape, envs.action_space,
actor_critic.recurrent_hidden_state_size)
obs = envs.reset()
if args.num_rollouts > 0:
rollouts.obs[0].copy_(torch.cat([obs for _ in range(args.num_rollouts // args.num_processes)] + [obs[:(args.num_rollouts % args.num_processes)]], dim=0))
else:
rollouts.obs[0].copy_(obs)
rollouts.to(device)
deque_len = args.num_rollouts if args.num_rollouts > 0 else (args.num_processes if args.num_processes > 10 else 10)
if dual_robots:
episode_rewards_robot1 = deque(maxlen=deque_len)
episode_rewards_robot2 = deque(maxlen=deque_len)
else:
episode_rewards = deque(maxlen=deque_len)
start = time.time()
for j in range(num_updates):
if args.use_linear_lr_decay:
# decrease learning rate linearly
if args.algo == "acktr":
# use optimizer's learning rate since it's hard-coded in kfac.py
update_linear_schedule(agent.optimizer, j, num_updates, agent.optimizer.lr)
else:
if dual_robots:
update_linear_schedule(agent_robot1.optimizer, j, num_updates, args.lr)
update_linear_schedule(agent_robot2.optimizer, j, num_updates, args.lr)
else:
update_linear_schedule(agent.optimizer, j, num_updates, args.lr)
if args.algo == 'ppo' and args.use_linear_clip_decay:
if dual_robots:
agent_robot1.clip_param = args.clip_param * (1 - j / float(num_updates))
agent_robot2.clip_param = args.clip_param * (1 - j / float(num_updates))
else:
agent.clip_param = args.clip_param * (1 - j / float(num_updates))
reward_list_robot1 = [[] for _ in range(args.num_processes)]
reward_list_robot2 = [[] for _ in range(args.num_processes)]
for step in range(args.num_steps):
# Sample actions
with torch.no_grad():
if dual_robots:
value_robot1, action_robot1, action_log_prob_robot1, recurrent_hidden_states_robot1 = actor_critic_robot1.act(
rollouts_robot1.obs[step, :args.num_processes],
rollouts_robot1.recurrent_hidden_states[step, :args.num_processes],
rollouts_robot1.masks[step, :args.num_processes])
value_robot2, action_robot2, action_log_prob_robot2, recurrent_hidden_states_robot2 = actor_critic_robot2.act(
rollouts_robot2.obs[step, :args.num_processes],
rollouts_robot2.recurrent_hidden_states[step, :args.num_processes],
rollouts_robot2.masks[step, :args.num_processes])
else:
value, action, action_log_prob, recurrent_hidden_states = actor_critic.act(
rollouts.obs[step, :args.num_processes],
rollouts.recurrent_hidden_states[step, :args.num_processes],
rollouts.masks[step, :args.num_processes])
# Obser reward and next obs
if dual_robots:
action = torch.cat((action_robot1, action_robot2), dim=-1)
obs, reward, done, infos = envs.step(action)
obs_robot1 = obs[:, :obs_robot_len]
obs_robot2 = obs[:, obs_robot_len:]
for i, info in enumerate(infos):
reward_list_robot1[i].append(info['reward_robot1'])
reward_list_robot2[i].append(info['reward_robot2'])
reward_robot1 = torch.tensor([[info['reward_robot1']] for info in infos])
reward_robot2 = torch.tensor([[info['reward_robot2']] for info in infos])
else:
obs, reward, done, infos = envs.step(action)
for i, info in enumerate(infos):
if 'episode' in info.keys():
if dual_robots:
episode_rewards_robot1.append(np.sum(reward_list_robot1[i]))
episode_rewards_robot2.append(np.sum(reward_list_robot2[i]))
else:
episode_rewards.append(info['episode']['r'])
# If done then clean the history of observations.
masks = torch.FloatTensor([[0.0] if done_ else [1.0]
for done_ in done])
if dual_robots:
rollouts_robot1.insert(obs_robot1, recurrent_hidden_states_robot1, action_robot1, action_log_prob_robot1, value_robot1, reward_robot1, masks)
rollouts_robot2.insert(obs_robot2, recurrent_hidden_states_robot2, action_robot2, action_log_prob_robot2, value_robot2, reward_robot2, masks)
else:
rollouts.insert(obs, recurrent_hidden_states, action, action_log_prob, value, reward, masks)
if args.num_rollouts > 0 and (j % (args.num_rollouts // args.num_processes) != 0):
# Only update the policies when we have performed num_rollouts simulations
continue
with torch.no_grad():
if dual_robots:
next_value_robot1 = actor_critic_robot1.get_value(rollouts_robot1.obs[-1],
rollouts_robot1.recurrent_hidden_states[-1],
rollouts_robot1.masks[-1]).detach()
next_value_robot2 = actor_critic_robot2.get_value(rollouts_robot2.obs[-1],
rollouts_robot2.recurrent_hidden_states[-1],
rollouts_robot2.masks[-1]).detach()
else:
next_value = actor_critic.get_value(rollouts.obs[-1],
rollouts.recurrent_hidden_states[-1],
rollouts.masks[-1]).detach()
if dual_robots:
rollouts_robot1.compute_returns(next_value_robot1, args.use_gae, args.gamma, args.tau)
rollouts_robot2.compute_returns(next_value_robot2, args.use_gae, args.gamma, args.tau)
value_loss_robot1, action_loss_robot1, dist_entropy_robot1 = agent_robot1.update(rollouts_robot1)
value_loss_robot2, action_loss_robot2, dist_entropy_robot2 = agent_robot2.update(rollouts_robot2)
rollouts_robot1.after_update()
rollouts_robot2.after_update()
else:
rollouts.compute_returns(next_value, args.use_gae, args.gamma, args.tau)
value_loss, action_loss, dist_entropy = agent.update(rollouts)
rollouts.after_update()
# save for every interval-th episode or for the last epoch
if (j % args.save_interval == 0 or j == num_updates - 1) and args.save_dir != "":
save_path = os.path.join(args.save_dir, args.algo)
try:
os.makedirs(save_path)
except OSError:
pass
# A really ugly way to save a model to CPU
if dual_robots:
save_model_robot1 = actor_critic_robot1
save_model_robot2 = actor_critic_robot2
if args.cuda:
save_model_robot1 = copy.deepcopy(actor_critic_robot1).cpu()
save_model_robot2 = copy.deepcopy(actor_critic_robot2).cpu()
save_model = [save_model_robot1, save_model_robot2,
getattr(get_vec_normalize(envs), 'ob_rms', None)]
else:
save_model = actor_critic
if args.cuda:
save_model = copy.deepcopy(actor_critic).cpu()
save_model = [save_model,
getattr(get_vec_normalize(envs), 'ob_rms', None)]
torch.save(save_model, os.path.join(save_path, args.env_name + ".pt"))
total_num_steps = (j + 1) * args.num_processes * args.num_steps
if j % args.log_interval == 0 and (len(episode_rewards_robot1) > 1 if dual_robots else len(episode_rewards) > 1):
end = time.time()
if dual_robots:
print("Robot1 updates {}, num timesteps {}, FPS {} \n Last {} training episodes: mean/median reward {:.1f}/{:.1f}, min/max reward {:.1f}/{:.1f}".
format(j, total_num_steps,
int(total_num_steps / (end - start)),
len(episode_rewards_robot1),
np.mean(episode_rewards_robot1),
np.median(episode_rewards_robot1),
np.min(episode_rewards_robot1),
np.max(episode_rewards_robot1), dist_entropy_robot1,
value_loss_robot1, action_loss_robot1))
print("Robot2 updates {}, Last {} training episodes: mean/median reward {:.1f}/{:.1f}, min/max reward {:.1f}/{:.1f}\n".
format(j, len(episode_rewards_robot2),
np.mean(episode_rewards_robot2),
np.median(episode_rewards_robot2),
np.min(episode_rewards_robot2),
np.max(episode_rewards_robot2), dist_entropy_robot2,
value_loss_robot2, action_loss_robot2))
else:
print("Updates {}, num timesteps {}, FPS {} \n Last {} training episodes: mean/median reward {:.1f}/{:.1f}, min/max reward {:.1f}/{:.1f}\n".
format(j, total_num_steps,
int(total_num_steps / (end - start)),
len(episode_rewards),
np.mean(episode_rewards),
np.median(episode_rewards),
np.min(episode_rewards),
np.max(episode_rewards), dist_entropy,
value_loss, action_loss))
sys.stdout.flush()
if (args.eval_interval is not None
and len(episode_rewards) > 1
and j % args.eval_interval == 0):
eval_envs = make_vec_envs(
args.env_name, args.seed + args.num_processes, args.num_processes,
args.gamma, eval_log_dir, args.add_timestep, device, True)
vec_norm = get_vec_normalize(eval_envs)
if vec_norm is not None:
vec_norm.eval()
vec_norm.ob_rms = get_vec_normalize(envs).ob_rms
if dual_robots:
eval_episode_rewards_robot1 = []
eval_episode_rewards_robot2 = []
else:
eval_episode_rewards = []
obs = eval_envs.reset()
if dual_robots:
obs_robot1 = obs[:, :obs_robot_len]
obs_robot2 = obs[:, obs_robot_len:]
eval_recurrent_hidden_states_robot1 = torch.zeros(args.num_processes,
actor_critic_robot1.recurrent_hidden_state_size, device=device)
eval_recurrent_hidden_states_robot2 = torch.zeros(args.num_processes,
actor_critic_robot2.recurrent_hidden_state_size, device=device)
else:
eval_recurrent_hidden_states = torch.zeros(args.num_processes,
actor_critic.recurrent_hidden_state_size, device=device)
eval_masks = torch.zeros(args.num_processes, 1, device=device)
eval_reward_list_robot1 = [[] for _ in range(args.num_processes)]
eval_reward_list_robot2 = [[] for _ in range(args.num_processes)]
while (len(eval_episode_rewards_robot1) < 10 if dual_robots else len(eval_episode_rewards) < 10):
with torch.no_grad():
if dual_robots:
_, action_robot1, _, eval_recurrent_hidden_states_robot1 = actor_critic_robot1.act(
obs_robot1, eval_recurrent_hidden_states_robot1, eval_masks, deterministic=True)
_, action_robot2, _, eval_recurrent_hidden_states_robot2 = actor_critic_robot2.act(
obs_robot2, eval_recurrent_hidden_states_robot2, eval_masks, deterministic=True)
else:
_, action, _, eval_recurrent_hidden_states = actor_critic.act(
obs, eval_recurrent_hidden_states, eval_masks, deterministic=True)
# Obser reward and next obs
if dual_robots:
action = torch.cat((action_robot1, action_robot2), dim=-1)
obs, reward, done, infos = eval_envs.step(action)
obs_robot1 = obs[:, :obs_robot_len]
obs_robot2 = obs[:, obs_robot_len:]
for i, info in enumerate(infos):
eval_reward_list_robot1[i].append(info['reward_robot1'])
eval_reward_list_robot2[i].append(info['reward_robot2'])
else:
obs, reward, done, infos = eval_envs.step(action)
eval_masks = torch.FloatTensor([[0.0] if done_ else [1.0]
for done_ in done])
reset_rewards = False
for info in infos:
if 'episode' in info.keys():
if dual_robots:
reset_rewards = True
eval_episode_rewards_robot1.append(np.sum(eval_reward_list_robot1[i]))
eval_episode_rewards_robot2.append(np.sum(eval_reward_list_robot2[i]))
else:
eval_episode_rewards.append(info['episode']['r'])
if reset_rewards:
eval_reward_list_robot1 = [[] for _ in range(args.num_processes)]
eval_reward_list_robot2 = [[] for _ in range(args.num_processes)]
eval_envs.close()
if dual_robots:
print(" Evaluation using {} episodes: robot1 mean reward {:.5f}, robot2 mean reward {:.5f}\n".
format(len(eval_episode_rewards_robot1),
np.mean(eval_episode_rewards_robot1), np.mean(eval_episode_rewards_robot2)))
else:
print(" Evaluation using {} episodes: mean reward {:.5f}\n".
format(len(eval_episode_rewards),
np.mean(eval_episode_rewards)))
sys.stdout.flush()
if args.vis and j % args.vis_interval == 0:
try:
# Sometimes monitor doesn't properly flush the outputs
win = visdom_plot(viz, win, args.log_dir, args.env_name,
args.algo, args.num_env_steps)
except IOError:
pass
if __name__ == "__main__":
main()