-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmacpo.py
592 lines (535 loc) · 30.5 KB
/
macpo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
import argparse
import os
import random
import time
from distutils.util import strtobool
import sys
sys.path.append('highway_envs')
import highway_env
highway_env.register_highway_envs()
from highway_env.envs.common.agents import FollowingVictimVulnerable
import gymnasium as gym
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.distributions.categorical import Categorical
from torch.utils.tensorboard import SummaryWriter
from gym_wrapper import MultiAgentAutoResetWrapper
from util import *
n_attackers = 4
EPS = 1e-8
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--exp-name", type=str, default=os.path.basename(__file__).rstrip(".py"),
help="the name of this experiment")
parser.add_argument("--env-name", type=str, default="highway-perfect-target-fast-v0",
help="the name of this experiment")
parser.add_argument("--learning-rate", type=float, default=2.5e-4,
help="the learning rate of the optimizer")
parser.add_argument("--seed", type=int, default=5,
help="seed of the experiment")
parser.add_argument("--total-timesteps", type=int, default=200000,
help="total timesteps of the experiments")
parser.add_argument("--torch-deterministic", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="if toggled, `torch.backends.cudnn.deterministic=False`")
parser.add_argument("--cuda", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="if toggled, cuda will be enabled by default")
parser.add_argument("--num-envs", type=int, default=1,
help="the number of parallel game environments")
parser.add_argument("--num-steps", type=int, default=1000,
help="the number of steps to run in each environment per policy rollout")
parser.add_argument("--anneal-lr", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="Toggle learning rate annealing for policy and value networks")
parser.add_argument("--gae", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="Use GAE for advantage computation")
parser.add_argument("--gamma", type=float, default=0.99,
help="the discount factor gamma")
parser.add_argument("--gae-lambda", type=float, default=0.95,
help="the lambda for the general advantage estimation")
parser.add_argument("--num-minibatches", type=int, default=4,
help="the number of mini-batches")
parser.add_argument("--update-epochs", type=int, default=4,
help="the K epochs to update the policy")
parser.add_argument("--norm-adv", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="Toggles advantages normalization")
parser.add_argument("--clip-coef", type=float, default=0.2,
help="the surrogate clipping coefficient")
parser.add_argument("--clip-vloss", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="Toggles whether or not to use a clipped loss for the value function, as per the paper.")
parser.add_argument("--ent-coef", type=float, default=0.01,
help="coefficient of the entropy")
parser.add_argument("--vf-coef", type=float, default=0.5,
help="coefficient of the value function")
parser.add_argument("--cvf-coef", type=float, default=0.5,
help="coefficient of the cost value function")
parser.add_argument("--max-grad-norm", type=float, default=0.5,
help="the maximum norm for the gradient clipping")
parser.add_argument("--target-kl", type=float, default=None,
help="the target KL divergence threshold")
parser.add_argument("--damping", type=float, default=1e-1,
help="the damping value for fisher vector product")
parser.add_argument("--max-kl", type=float, default=0.05,
help="the trust region for KL divergence")
parser.add_argument("--max-constraint", type=float, default=0.1,
help="the maximum constraint (d_k)")
parser.add_argument("--constraint-annealing-factor", type=float, default=1e-6,
help="the annealing factor of constraint")
parser.add_argument("--line-search-fraction", type=float, default=0.5,
help="line search fraction")
parser.add_argument("--value-update-epochs", type=int, default=10,
help="the number of epochs to update the value functions")
parser.add_argument("--fraction-coef", type=float, default=0.5,
help="the fraction coefficient")
parser.add_argument("--ls-step", type=int, default=10,
help="maximum number of line search steps")
args = parser.parse_args()
args.batch_size = int(args.num_envs * args.num_steps)
args.minibatch_size = int(args.batch_size // args.num_minibatches)
return args
def config_env():
env = gym.make(args.env_name, render_mode="rgb_array")
env.configure({"observation": {
"type": "MultiAgentObservation",
"observation_config": {
"type": "AttackerKinematics",
"see_behind": True,
"vehicles_count": n_attackers+1
}
},
"attacker_num": n_attackers,
"controlled_vehicles": n_attackers,
"time_penalty": -0.1/n_attackers,
"time_penalty": 0.0,
"attacker_collide_each_other_reward": -2.5,
"vicitm_collision_reward": 10.0/n_attackers,
"randomize_starting_position": False,
"constraint_env": True,
"vis": False,
"testing": False,
"victim_lane_id": 1})
env.reset()
victim_agent = FollowingVictimVulnerable(env)
env.load_agents(n_attackers, victim_agent)
env = MultiAgentAutoResetWrapper(env)
return env
def layer_init(layer, std=np.sqrt(2), bias_const=0.0):
torch.nn.init.orthogonal_(layer.weight, std)
torch.nn.init.constant_(layer.bias, bias_const)
return layer
class AttackerAgent(nn.Module):
def __init__(self, envs, num_agents, hidden_dim):
super(AttackerAgent, self).__init__()
# print(envs.action_space)
self.critic = nn.Sequential(
layer_init(nn.Linear((n_attackers+1)*5, hidden_dim)),
nn.Tanh(),
layer_init(nn.Linear(hidden_dim, hidden_dim)),
nn.Tanh(),
layer_init(nn.Linear(hidden_dim, 1), std=1.0),
)
self.cost_critic = nn.Sequential(
layer_init(nn.Linear((n_attackers+1)*5, hidden_dim)),
nn.Tanh(),
layer_init(nn.Linear(hidden_dim, hidden_dim)),
nn.Tanh(),
layer_init(nn.Linear(hidden_dim, 1), std=1.0),
)
self.actor = nn.Sequential(
layer_init(nn.Linear((n_attackers+1)*5, hidden_dim)),
nn.Tanh(),
layer_init(nn.Linear(hidden_dim, hidden_dim)),
nn.Tanh(),
layer_init(nn.Linear(hidden_dim, 5), std=0.01),
)
def get_value(self, x):
x = x.flatten(start_dim=-2)
return self.critic(x)
def get_cost_value(self, x):
x = x.flatten(start_dim=-2)
return self.cost_critic(x)
def get_action_and_value(self, x, centralized_x, action=None):
x = x.flatten(start_dim=-2)
centralized_x = centralized_x.flatten(start_dim=-2)
logits = self.actor(x)
dist = Categorical(logits=logits)
if action is None:
action = dist.sample()
return action, dist.log_prob(action), dist.entropy(), self.critic(centralized_x), logits, self.cost_critic(x)
def get_action_info(self, x, action=None):
x = x.flatten(start_dim=-2)
logits = self.actor(x)
dist = Categorical(logits=logits)
if action is None:
action = dist.sample()
return action, dist.log_prob(action), dist.entropy()
def get_kl(self, x, b_logits):
x = x.flatten(start_dim=-2)
logits = self.actor(x)
probs = torch.nn.functional.softmax(logits, dim=-1)
b_probs = torch.nn.functional.softmax(b_logits, dim=-1)
kl = categorical_kl(probs, b_probs).mean()
return kl
if __name__ == "__main__":
args = parse_args()
PATHS = []
folder_path = "saved_models\\macpo_new_vulnerable_target_seed_" + str(args.seed) + "_" + str(n_attackers)
if not os.path.exists(folder_path):
os.makedirs(folder_path)
for i in range(n_attackers):
PATHS.append(folder_path +"\\agent" + str(i) + ".pt")
env_name = "highway_custom_macpo_new_vulnerable_target_" + str(n_attackers)
run_name = f"{env_name}__{args.exp_name}__{args.seed}__{int(time.time())}"
writer = SummaryWriter(f"runs/macpo/{run_name}")
writer.add_text(
"hyperparameters",
"|param|value|\n|-|-|\n%s" % ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])),
)
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.backends.cudnn.deterministic = args.torch_deterministic
device = torch.device("cuda" if torch.cuda.is_available() and args.cuda else "cpu")
envs = config_env()
agents = []
critic_optimizers = []
cost_critic_optimizers = []
for i in range(n_attackers):
agents.append(AttackerAgent(envs, n_attackers, 128).to(device))
critic_optimizers.append(optim.Adam(agents[i].critic.parameters(), lr=args.learning_rate, eps=1e-5))
cost_critic_optimizers.append(optim.Adam(agents[i].cost_critic.parameters(), lr=args.learning_rate, eps=1e-5))
obs = torch.zeros((n_attackers, args.num_steps, args.num_envs) + (n_attackers+1,5)).to(device)
centralized_obs = torch.zeros((args.num_steps, args.num_envs) + (n_attackers+1,5)).to(device)
actions = torch.zeros((n_attackers, args.num_steps, args.num_envs) + ()).to(device)
logprobs = torch.zeros((n_attackers, args.num_steps, args.num_envs)).to(device)
rewards = torch.zeros((n_attackers, args.num_steps, args.num_envs)).to(device)
dones = torch.zeros((n_attackers, args.num_steps, args.num_envs)).to(device)
values = torch.zeros((n_attackers, args.num_steps, args.num_envs)).to(device)
cost_values = torch.zeros((n_attackers, args.num_steps, args.num_envs)).to(device)
saved_logits = torch.zeros((n_attackers, args.num_steps, args.num_envs) + (5, )).to(device)
costs = torch.zeros((n_attackers, args.num_steps, args.num_envs)).to(device)
# TRY NOT TO MODIFY: start the game
global_step = 0
d_k = args.max_constraint
e_k = args.constraint_annealing_factor
start_time = time.time()
next_obs = torch.Tensor(envs.reset()[0]).to(device)
# print("observation: {}".format(next_obs))
next_done = torch.zeros(n_attackers).to(device)
num_updates = args.total_timesteps // args.batch_size
'''
collect samples
'''
for update in range(1, num_updates + 1):
# d_k = d_k + d_k*e_k
# Annealing the rate if instructed to do so.
if args.anneal_lr:
frac = 1.0 - (update - 1.0) / num_updates
lrnow = frac * args.learning_rate
for a in range(n_attackers):
critic_optimizers[a].param_groups[0]["lr"] = lrnow
cost_critic_optimizers[a].param_groups[0]["lr"] = lrnow
for step in range(0, args.num_steps):
global_step += 1 * args.num_envs
actions_to_take = [0 for _ in range(n_attackers)]
centralized_obs[step] = next_obs[0]
for i in range(n_attackers):
obs[i, step] = next_obs[i]
dones[i, step] = next_done[i]
with torch.no_grad():
action, logprob, _, value, logits_, cost_value = agents[i].get_action_and_value(next_obs[i], centralized_obs[step])
values[i, step] = value.flatten()
cost_values[i, step] = cost_value.flatten()
saved_logits[i, step] = logits_
actions[i, step] = action
logprobs[i, step] = logprob
actions_to_take[i] = action.item()
next_obs, (reward, cost), done, truncated, info = envs.step(tuple(actions_to_take))
for i in range(n_attackers):
rewards[i, step] = torch.tensor(reward[i]).to(device).view(-1)
costs[i, step] = torch.tensor(cost[i]).to(device).view(-1)
next_obs, next_done = torch.Tensor(next_obs).to(device), torch.Tensor(done).to(device)
if 'final_info' in info.keys():
item = info['final_info']
print(f"global_step={global_step}, episodic_return={item['episode']['r']}")
writer.add_scalar("charts/episodic_return", item["episode"]["r"], global_step)
writer.add_scalar("charts/episodic_length", item["episode"]["l"], global_step)
writer.add_scalar("charts/episodic_cost", item["episode"]["c"], global_step)
'''
estimate advantages
'''
with torch.no_grad():
next_values = []
next_cost_values = []
for i in range(n_attackers):
next_values.append(agents[i].get_value(next_obs[0]))
next_cost_values.append(agents[i].get_cost_value(next_obs[i]))
if args.gae:
# estimate advantages
advantages = torch.zeros_like(rewards).to(device)
cost_advantages = torch.zeros_like(costs).to(device)
for i in range(n_attackers):
lastgaelam = 0
for t in reversed(range(args.num_steps)):
if t == args.num_steps - 1:
nextnonterminal = 1.0 - next_done[i]
nextvalues = next_values[i]
else:
nextnonterminal = 1.0 - dones[i, t + 1]
nextvalues = values[i, t + 1]
delta = rewards[:, t].mean() + args.gamma * nextvalues * nextnonterminal - values[i, t]
advantages[i, t] = lastgaelam = delta + args.gamma * args.gae_lambda * nextnonterminal * lastgaelam
'''
# use a centralized dones to calculate advantages
advantages = torch.zeros((args.num_steps, args.num_envs)).to(device)
lastgaelam = 0
for t in reversed(range(args.num_steps)):
if t == args.num_steps - 1:
nextnonterminal = any(1.0 - next_done)
nextvalues = next_value
else:
nextnonterminal = any(1.0 - dones[:, t + 1])
nextvalues = values[t + 1]
# print("value of different agents: ", values[:, t])
delta = rewards[:, t].mean() + args.gamma * nextvalues * nextnonterminal - values[t]
# print("*********")
# print(delta)
# print(advantages.shape)
advantages[t] = lastgaelam = delta + args.gamma * args.gae_lambda * nextnonterminal * lastgaelam
'''
# estimate cost advantages
lastgaelam = 0
for t in reversed(range(args.num_steps)):
if t == args.num_steps - 1:
nextnonterminal = 1.0 - next_done[i]
nextcostvalues = next_cost_values[i]
else:
nextnonterminal = 1.0 - dones[i, t + 1]
nextcostvalues = cost_values[i, t + 1]
delta = costs[i, t] + args.gamma * nextcostvalues * nextnonterminal - cost_values[i, t]
cost_advantages[i, t] = lastgaelam = delta + args.gamma * args.gae_lambda * nextnonterminal * lastgaelam
returns = advantages + values
cost_returns = cost_advantages + cost_values
b_obs = obs.squeeze()
b_logprobs = logprobs.squeeze()
b_actions = actions.squeeze()
b_advantages = advantages.squeeze()
b_returns = returns.squeeze()
b_cost_returns = cost_returns.squeeze()
b_values = values.squeeze()
b_cost_values = cost_values.squeeze()
b_logits = saved_logits.squeeze()
b_cost_advantages = cost_advantages.squeeze()
b_cost = costs.squeeze()
# Optimizing the policy and value network
b_inds = np.arange(args.batch_size)
for epoch in range(args.update_epochs):
np.random.shuffle(b_inds)
for start in range(0, args.batch_size, args.minibatch_size):
end = start + args.minibatch_size
mb_inds = b_inds[start:end]
M = torch.ones_like(b_actions.long()[i, mb_inds]).to(device)
for i in np.random.permutation(n_attackers):
mb_advantages = b_advantages[i, mb_inds]
mb_cost_advantages = b_cost_advantages[i, mb_inds]
if args.norm_adv:
mb_advantages = (mb_advantages - mb_advantages.mean()) / (mb_advantages.std() + 1e-8)
mb_cost_advantages = (mb_cost_advantages - mb_cost_advantages.mean()) / (mb_cost_advantages.std() + 1e-8)
_, old_logprobs_M, *_ = agents[i].get_action_info(b_obs[i, mb_inds], b_actions.long()[i, mb_inds])
def get_loss(volatile=False):
with torch.set_grad_enabled(not volatile):
_, newlogprob, *_ = agents[i].get_action_info(b_obs[i, mb_inds], b_actions.long()[i, mb_inds])
action_loss = -mb_advantages * torch.exp(newlogprob - b_logprobs[i, mb_inds])*M
return action_loss.mean()
def get_cost_loss(volatile=False):
with torch.set_grad_enabled(not volatile):
_, newlogprob, *_ = agents[i].get_action_info(b_obs[i, mb_inds], b_actions.long()[i, mb_inds])
cost_loss = mb_cost_advantages * torch.exp(newlogprob - b_logprobs[i, mb_inds])
# print("mb_cost_advantages: ", mb_cost_advantages )
return cost_loss.mean()
def fisher_vector_product(y):
kl = agents[i].get_kl(b_obs[i, mb_inds], b_logits[i, mb_inds])
grads = torch.autograd.grad(kl, agents[i].actor.parameters(), create_graph=True)
flat_grads = torch.cat([g.view(-1) for g in grads])
inner_prod = flat_grads.t() @ y # different results due to numerical precision and
# exploiting GPU parallelism by reduction in operations
grads = torch.autograd.grad(inner_prod, agents[i].actor.parameters())
flat_grads = torch.cat([g.reshape(-1) for g in grads]).data
return flat_grads + y * args.damping
# TODO: check whether we should replace b_cost with cost surrogate/cost loss
print("cost mean: {}".format(b_cost[i, mb_inds].mean()))
rescale_constraint_val = (b_cost[i, mb_inds].mean() - d_k) * (1 - args.gamma)
if rescale_constraint_val == 0:
rescale_constraint_val = EPS
print("rescale_constraint_val: {}".format(rescale_constraint_val))
loss = get_loss()
grads = torch.autograd.grad(loss, agents[i].actor.parameters())
loss_grad = torch.cat([grad.view(-1) for grad in grads]).detach() #g
grad_norm = False # TODO: shall we set this to True?
if grad_norm == True:
loss_grad = loss_grad/torch.norm(loss_grad)
stepdir = cg(fisher_vector_product, -loss_grad, 10) #(H^-1)*g
if grad_norm == True:
stepdir = stepdir/torch.norm(stepdir)
cost_loss = get_cost_loss()
# print('cost_loss: ', cost_loss)
cost_grads = torch.autograd.grad(cost_loss, agents[i].actor.parameters(), allow_unused=True)
# print('cost_grads: ', cost_grads)
cost_loss_grad = torch.cat([grad.view(-1) for grad in cost_grads]).detach() #a
# print('cost_loss_grad: ', cost_loss_grad)
cost_loss_grad = cost_loss_grad/torch.norm(cost_loss_grad)
cost_stepdir = cg(fisher_vector_product, -cost_loss_grad, 10) #(H^-1)*a
cost_stepdir = cost_stepdir/torch.norm(cost_stepdir)
q = loss_grad.dot(stepdir) #g^T.H^-1.g
print("q: {}".format(q))
r = loss_grad.dot(cost_stepdir) #g^T.H^-1.a
s = cost_loss_grad.dot(cost_stepdir) #a^T.H^-1.a
print("s: {}".format(s))
fraction = args.line_search_fraction
loss_improve = 0
if (torch.dot(cost_loss_grad, cost_loss_grad)) <=EPS and rescale_constraint_val < 0:
cost_stepdir = torch.tensor(0)
r = torch.tensor(0)
s = torch.tensor(0)
positive_Cauchy_value = torch.tensor(0)
whether_recover_policy_value = torch.tensor(0)
optim_case = 4
else:
# cost grad is nonzero: CPO update!
r = loss_grad.dot(cost_stepdir)
s = cost_loss_grad.dot(cost_stepdir) #a^T.H^-1.a
if r == 0:
r = EPS
if s == 0:
s = EPS
positive_Cauchy_value = (
q - (r ** 2) / (EPS + s)) # should be always positive (Cauchy-Shwarz)
whether_recover_policy_value = args.max_kl - (
rescale_constraint_val ** 2) / (
EPS + s) # does safety boundary intersect trust region? (positive = yes)
if rescale_constraint_val < 0 and whether_recover_policy_value < 0:
# point in trust region is feasible and safety boundary doesn't intersect
# ==> entire trust region is feasible
optim_case = 3
elif rescale_constraint_val < 0 and whether_recover_policy_value >= 0:
# x = 0 is feasible and safety boundary intersects
# ==> most of trust region is feasible
optim_case = 2
elif rescale_constraint_val >= 0 and whether_recover_policy_value >= 0:
# x = 0 is infeasible and safety boundary intersects
# ==> part of trust region is feasible, recovery possible
optim_case = 1
else:
# x = 0 infeasible, and safety halfspace is outside trust region
# ==> whole trust region is infeasible, try to fail gracefully
optim_case = 0
if whether_recover_policy_value == 0:
whether_recover_policy_value = EPS
print("optim_case: ", optim_case)
if optim_case in [3, 4]:
lam = torch.sqrt(
(q / (2 * args.max_kl)))
nu = torch.tensor(0)
elif optim_case in [1, 2]:
LA, LB = [0, r / rescale_constraint_val], [r / rescale_constraint_val, np.inf]
LA, LB = (LA, LB) if rescale_constraint_val < 0 else (LB, LA)
proj = lambda x, L: max(L[0], min(L[1], x))
lam_a = proj(torch.sqrt(positive_Cauchy_value / whether_recover_policy_value), LA)
lam_b = proj(torch.sqrt(q / (torch.tensor( args.max_kl))), LB)
f_a = lambda lam: -0.5 * (positive_Cauchy_value / (
EPS + lam) + whether_recover_policy_value * lam) - r * rescale_constraint_val / (
EPS + s)
f_b = lambda lam: -0.5 * (q / (EPS + lam) + 2 * args.max_kl * lam)
lam = lam_a if f_a(lam_a) >= f_b(lam_b) else lam_b
nu = max(0, (lam * rescale_constraint_val - r)/ (EPS + s))
else:
lam = torch.tensor(0)
nu = torch.sqrt(torch.tensor(2 * args.max_kl) / (EPS + s))
x_a = (1. / (lam + EPS)) * (stepdir - nu * cost_stepdir)
x_b = (-nu * cost_stepdir)
x = x_a if optim_case > 0 else x_b # delta theta
# line search
prev_params = get_flat_params_from(agents[i].actor)
prev_loss = loss.clone().detach()
prev_cost_loss = cost_loss.clone().detach()
expected_improve = -torch.dot(x, loss_grad)
expected_improve = expected_improve.clone().detach()
flag = False
fraction_coef = args.fraction_coef
for l in range(args.ls_step):
x_norm = torch.norm(x)
if x_norm > 0.5:
x = x * 0.5 / x_norm
new_params = prev_params + fraction_coef * (fraction**l) * x # TODO: should this be + or -?
set_flat_params_to(new_params, agents[i].actor)
try:
new_loss = get_loss(True)
new_cost_loss = get_cost_loss(True)
except:
print("network exploded!!!!!!!!!!!!!!!")
break
kl = agents[i].get_kl(b_obs[i, mb_inds], b_logits[i, mb_inds])
print("cost improvement: ", new_cost_loss- cost_loss)
print("objective improvement: ", new_loss- prev_loss)
# see https: // en.wikipedia.org / wiki / Backtracking_line_search
if ((kl <= args.max_kl) and (new_loss < prev_loss if optim_case > 1 else True)
and (new_cost_loss- cost_loss <= max(-rescale_constraint_val, 0))):
flag = True
print("^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^")
print("line search successful")
break
expected_improve *= fraction
if not flag:
# line search failed
print("line search failed")
set_flat_params_to(prev_params, agents[i].actor)
_, new_logprobs_M, *_ = agents[i].get_action_info(b_obs[i, mb_inds], b_actions.long()[i, mb_inds])
M = M * torch.exp(new_logprobs_M - old_logprobs_M).detach()
for _ in range(args.value_update_epochs):
# Value loss
newvalue = agents[i].get_value(b_obs[i, mb_inds]).view(-1)
if args.clip_vloss:
v_loss_unclipped = (newvalue - b_returns[i, mb_inds]) ** 2
v_clipped = b_values[i, mb_inds] + torch.clamp(
newvalue - b_values[i, mb_inds],
-args.clip_coef,
args.clip_coef,
)
v_loss_clipped = (v_clipped - b_returns[i, mb_inds]) ** 2
v_loss_max = torch.max(v_loss_unclipped, v_loss_clipped)
v_loss = 0.5 * v_loss_max.mean()
else:
v_loss = 0.5 * ((newvalue - b_returns[mb_inds]) ** 2).mean()
critic_optimizers[i].zero_grad()
(v_loss * args.vf_coef).backward()
nn.utils.clip_grad_norm_(agents[i].critic.parameters(), args.max_grad_norm)
critic_optimizers[i].step()
# cost value loss
newcostvalue = agents[i].get_cost_value(b_obs[i, mb_inds]).view(-1)
if args.clip_vloss:
c_loss_unclipped = (newcostvalue - b_cost_returns[i, mb_inds]) ** 2
c_clipped = b_cost_values[i, mb_inds] + torch.clamp(
newcostvalue - b_cost_values[i, mb_inds],
-args.clip_coef,
args.clip_coef,
)
c_loss_clipped = (c_clipped - b_cost_returns[i, mb_inds]) ** 2
c_loss_max = torch.max(c_loss_unclipped, c_loss_clipped)
c_loss = 0.5 * c_loss_max.mean()
else:
c_loss = 0.5 * ((newcostvalue - b_cost_returns[i, mb_inds]) ** 2).mean()
cost_critic_optimizers[i].zero_grad()
(c_loss * args.cvf_coef).backward()
nn.utils.clip_grad_norm_(agents[i].cost_critic.parameters(), args.max_grad_norm)
cost_critic_optimizers[i].step()
# TRY NOT TO MODIFY: record rewards for plotting purposes
writer.add_scalar("charts/learning_rate", critic_optimizers[i].param_groups[0]["lr"], global_step)
writer.add_scalar("losses/value_loss", v_loss.item(), global_step)
writer.add_scalar("losses/policy_loss", loss.item(), global_step)
print("SPS:", int(global_step / (time.time() - start_time)))
writer.add_scalar("charts/SPS", int(global_step / (time.time() - start_time)), global_step)
for i in range(n_attackers):
torch.save(agents[i], PATHS[i])
envs.close()
writer.close()