-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmunkres.m
200 lines (184 loc) · 7 KB
/
munkres.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
function [assignment,cost] = munkres(costMat)
% MUNKRES Munkres (Hungarian) Algorithm for Linear Assignment Problem.
%
% [ASSIGN,COST] = munkres(COSTMAT) returns the optimal column indices,
% ASSIGN assigned to each row and the minimum COST based on the assignment
% problem represented by the COSTMAT, where the (i,j)th element represents the cost to assign the jth
% job to the ith worker.
%
% Partial assignment: This code can identify a partial assignment is a full
% assignment is not feasible. For a partial assignment, there are some
% zero elements in the returning assignment vector, which indicate
% un-assigned tasks. The cost returned only contains the cost of partially
% assigned tasks.
% This is vectorized implementation of the algorithm. It is the fastest
% among all Matlab implementations of the algorithm.
% Examples
% Example 1: a 5 x 5 example
%{
[assignment,cost] = munkres(magic(5));
disp(assignment); % 3 2 1 5 4
disp(cost); %15
%}
% Example 2: 400 x 400 random data
%{
n=400;
A=rand(n);
tic
[a,b]=munkres(A);
toc % about 2 seconds
%}
% Example 3: rectangular assignment with inf costs
%{
A=rand(10,7);
A(A>0.7)=Inf;
[a,b]=munkres(A);
%}
% Example 4: an example of partial assignment
%{
A = [1 3 Inf; Inf Inf 5; Inf Inf 0.5];
[a,b]=munkres(A)
%}
% a = [1 0 3]
% b = 1.5
% Reference:
% "Munkres' Assignment Algorithm, Modified for Rectangular Matrices",
% http://csclab.murraystate.edu/bob.pilgrim/445/munkres.html
% version 2.3 by Yi Cao at Cranfield University on 11th September 2011
assignment = zeros(1,size(costMat,1));
cost = 0;
validMat = costMat == costMat & costMat < Inf;
bigM = 10^(ceil(log10(sum(costMat(validMat))))+1);
costMat(~validMat) = bigM;
% costMat(costMat~=costMat)=Inf;
% validMat = costMat<Inf;
validCol = any(validMat,1);
validRow = any(validMat,2);
nRows = sum(validRow);
nCols = sum(validCol);
n = max(nRows,nCols);
if ~n
return
end
maxv=10*max(costMat(validMat));
dMat = zeros(n) + maxv;
dMat(1:nRows,1:nCols) = costMat(validRow,validCol);
%*************************************************
% Munkres' Assignment Algorithm starts here
%*************************************************
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% STEP 1: Subtract the row minimum from each row.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
minR = min(dMat,[],2);
minC = min(bsxfun(@minus, dMat, minR));
%**************************************************************************
% STEP 2: Find a zero of dMat. If there are no starred zeros in its
% column or row start the zero. Repeat for each zero
%**************************************************************************
zP = dMat == bsxfun(@plus, minC, minR);
starZ = zeros(n,1);
while any(zP(:))
[r,c]=find(zP,1);
starZ(r)=c;
zP(r,:)=false;
zP(:,c)=false;
end
while 1
%**************************************************************************
% STEP 3: Cover each column with a starred zero. If all the columns are
% covered then the matching is maximum
%**************************************************************************
if all(starZ>0)
break
end
coverColumn = false(1,n);
coverColumn(starZ(starZ>0))=true;
coverRow = false(n,1);
primeZ = zeros(n,1);
[rIdx, cIdx] = find(dMat(~coverRow,~coverColumn)==bsxfun(@plus,minR(~coverRow),minC(~coverColumn)));
while 1
%**************************************************************************
% STEP 4: Find a noncovered zero and prime it. If there is no starred
% zero in the row containing this primed zero, Go to Step 5.
% Otherwise, cover this row and uncover the column containing
% the starred zero. Continue in this manner until there are no
% uncovered zeros left. Save the smallest uncovered value and
% Go to Step 6.
%**************************************************************************
cR = find(~coverRow);
cC = find(~coverColumn);
rIdx = cR(rIdx);
cIdx = cC(cIdx);
Step = 6;
while ~isempty(cIdx)
uZr = rIdx(1);
uZc = cIdx(1);
primeZ(uZr) = uZc;
stz = starZ(uZr);
if ~stz
Step = 5;
break;
end
coverRow(uZr) = true;
coverColumn(stz) = false;
z = rIdx==uZr;
rIdx(z) = [];
cIdx(z) = [];
cR = find(~coverRow);
z = dMat(~coverRow,stz) == minR(~coverRow) + minC(stz);
rIdx = [rIdx(:);cR(z)];
cIdx = [cIdx(:);stz(ones(sum(z),1))];
end
if Step == 6
% *************************************************************************
% STEP 6: Add the minimum uncovered value to every element of each covered
% row, and subtract it from every element of each uncovered column.
% Return to Step 4 without altering any stars, primes, or covered lines.
%**************************************************************************
[minval,rIdx,cIdx]=outerplus(dMat(~coverRow,~coverColumn),minR(~coverRow),minC(~coverColumn));
minC(~coverColumn) = minC(~coverColumn) + minval;
minR(coverRow) = minR(coverRow) - minval;
else
break
end
end
%**************************************************************************
% STEP 5:
% Construct a series of alternating primed and starred zeros as
% follows:
% Let Z0 represent the uncovered primed zero found in Step 4.
% Let Z1 denote the starred zero in the column of Z0 (if any).
% Let Z2 denote the primed zero in the row of Z1 (there will always
% be one). Continue until the series terminates at a primed zero
% that has no starred zero in its column. Unstar each starred
% zero of the series, star each primed zero of the series, erase
% all primes and uncover every line in the matrix. Return to Step 3.
%**************************************************************************
rowZ1 = find(starZ==uZc);
starZ(uZr)=uZc;
while rowZ1>0
starZ(rowZ1)=0;
uZc = primeZ(rowZ1);
uZr = rowZ1;
rowZ1 = find(starZ==uZc);
starZ(uZr)=uZc;
end
end
% Cost of assignment
rowIdx = find(validRow);
colIdx = find(validCol);
starZ = starZ(1:nRows);
vIdx = starZ <= nCols;
assignment(rowIdx(vIdx)) = colIdx(starZ(vIdx));
pass = assignment(assignment>0);
pass(~diag(validMat(assignment>0,pass))) = 0;
assignment(assignment>0) = pass;
cost = trace(costMat(assignment>0,assignment(assignment>0)));
function [minval,rIdx,cIdx]=outerplus(M,x,y)
ny=size(M,2);
minval=inf;
for c=1:ny
M(:,c)=M(:,c)-(x+y(c));
minval = min(minval,min(M(:,c)));
end
[rIdx,cIdx]=find(M==minval);