-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathtrain.py
169 lines (151 loc) · 7.91 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import argparse
import random
import numpy as np
from pathlib import Path
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from dgl.contrib.sampling import NeighborSampler
# self-defined
from utils import load_data_internal
from models import GNN
from pprint import pprint
class Trainer:
def __init__(self, params):
self.params = params
self.prj_path = Path(__file__).parent.resolve()
self.save_path = self.prj_path / 'pretrained' / f'{self.params.species}' / 'models'
if not self.save_path.exists():
self.save_path.mkdir(parents=True)
self.device = torch.device('cpu' if self.params.gpu == -1 else f'cuda:{params.gpu}')
self.num_cells, self.num_genes, self.num_labels, self.graph, self.train_ids, self.test_ids, self.labels = load_data_internal(params)
self.labels = self.labels.to(self.device)
self.model = GNN(in_feats=self.params.dense_dim,
n_hidden=self.params.hidden_dim,
n_classes=self.num_labels,
n_layers=self.params.n_layers,
gene_num=self.num_genes,
activation=F.relu,
dropout=self.params.dropout).to(self.device)
self.optimizer = torch.optim.Adam(self.model.parameters(), lr=self.params.lr,
weight_decay=self.params.weight_decay)
self.loss_fn = nn.CrossEntropyLoss(reduction='sum')
if self.params.num_neighbors == 0:
self.num_neighbors = self.num_cells + self.num_genes
else:
self.num_neighbors = self.params.num_neighbors
print(f"Train Number: {len(self.train_ids)}, Test Number: {len(self.test_ids)}")
def fit(self):
max_test_acc, _train_acc, _epoch = 0, 0, 0
for epoch in range(self.params.n_epochs):
loss = self.train()
train_correct, train_unsure = self.evaluate(self.train_ids, 'train')
train_acc = train_correct / len(self.train_ids)
test_correct, test_unsure = self.evaluate(self.test_ids, 'test')
test_acc = test_correct / len(self.test_ids)
if max_test_acc <= test_acc:
final_test_correct_num = test_correct
final_test_unsure_num = test_unsure
_train_acc = train_acc
_epoch = epoch
max_test_acc = test_acc
self.save_model()
print(
f">>>>Epoch {epoch:04d}: Train Acc {train_acc:.4f}, Loss {loss / len(self.train_ids):.4f}, Test correct {test_correct}, "
f"Test unsure {test_unsure}, Test Acc {test_acc:.4f}")
if train_acc == 1:
break
print(f"---{self.params.species} {self.params.tissue} Best test result:---")
print(f"Epoch {_epoch:04d}, Train Acc {_train_acc:.4f}, Test Correct Num {final_test_correct_num}, Test Total Num {len(self.test_ids)}, Test Unsure Num {final_test_unsure_num}, Test Acc {final_test_correct_num / len(self.test_ids):.4f}")
def train(self):
self.model.train()
total_loss = 0
for batch, nf in enumerate(NeighborSampler(g=self.graph,
batch_size=self.params.batch_size,
expand_factor=self.num_neighbors,
num_hops=self.params.n_layers,
neighbor_type='in',
shuffle=True,
num_workers=8,
seed_nodes=self.train_ids)):
nf.copy_from_parent() # Copy node/edge features from the parent graph.
logits = self.model(nf)
batch_nids = nf.layer_parent_nid(-1).type(torch.long).to(device=self.device)
loss = self.loss_fn(logits, self.labels[batch_nids])
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
total_loss += loss.item()
return total_loss
def evaluate(self, ids, type='test'):
self.model.eval()
total_correct, total_unsure = 0, 0
for nf in NeighborSampler(g=self.graph,
batch_size=self.params.batch_size,
expand_factor=self.num_cells + self.num_genes,
num_hops=params.n_layers,
neighbor_type='in',
shuffle=True,
num_workers=8,
seed_nodes=ids):
nf.copy_from_parent() # Copy node/edge features from the parent graph.
with torch.no_grad():
logits = self.model(nf).cpu()
batch_nids = nf.layer_parent_nid(-1).type(torch.long)
logits = nn.functional.softmax(logits, dim=1).numpy()
label_list = self.labels.cpu()[batch_nids]
for pred, label in zip(logits, label_list):
max_prob = pred.max().item()
if max_prob < self.params.unsure_rate / self.num_labels:
total_unsure += 1
elif pred.argmax().item() == label:
total_correct += 1
return total_correct, total_unsure
def save_model(self):
state = {
'model': self.model.state_dict(),
'optimizer': self.optimizer.state_dict()
}
torch.save(state, self.save_path / f"{self.params.species}-{self.params.tissue}.pt")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--random_seed", type=int, default=10086)
parser.add_argument("--dropout", type=float, default=0.1,
help="dropout probability")
parser.add_argument("--gpu", type=int, default=2,
help="GPU id, -1 for cpu")
parser.add_argument("--filetype", default='csv', type=str, choices=['csv', 'gz'],
help='data file type, csv or gz')
parser.add_argument("--lr", type=float, default=1e-3,
help="learning rate")
parser.add_argument("--weight_decay", type=float, default=5e-4,
help="Weight for L2 loss")
parser.add_argument("--n_epochs", type=int, default=300,
help="number of training epochs")
parser.add_argument("--dense_dim", type=int, default=400,
help="number of hidden gcn units")
parser.add_argument("--hidden_dim", type=int, default=200,
help="number of hidden gcn units")
parser.add_argument("--n_layers", type=int, default=1,
help="number of hidden gcn layers")
parser.add_argument("--threshold", type=float, default=0,
help="the threshold to connect edges between cells and genes")
parser.add_argument("--num_neighbors", type=int, default=0,
help="number of neighbors to sample in message passing process. 0 means all neighbors")
parser.add_argument("--exclude_rate", type=float, default=0.005,
help="exclude some cells less than this rate.")
parser.add_argument("--species", default='mouse', type=str)
parser.add_argument("--tissue", required=True, type=str)
parser.add_argument("--batch_size", type=int, default=500)
parser.add_argument("--unsure_rate", type=float, default=2.,
help="the threshold to predict unsure cell")
parser.add_argument("--test_rate", type=float, default=0.2)
params = parser.parse_args()
pprint(vars(params))
random.seed(params.random_seed)
np.random.seed(params.random_seed)
torch.manual_seed(params.random_seed)
torch.cuda.manual_seed(params.random_seed)
trainer = Trainer(params)
trainer.fit()