-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
339 lines (310 loc) · 17.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import torch
import torch.nn as nn
import torch.utils
import torch.distributions as D
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import numpy as np
from sklearn.model_selection import train_test_split
from models.vae.vae import VariationalAutoencoder
from models.gan.label_generator import Generator
from models.gan.discriminator import Discriminator
from models.gan.wasserstein_distance import SinkhornDistance
from models.estimator.bnn import BNN
from itertools import chain
import pandas as pd
from config import Config
device = 'cuda' if torch.cuda.is_available() else 'cpu'
config = Config.config
class GeneratorDataset(Dataset):
def __init__(self, t, x, y):
self.reg_term = np.concatenate((t, x, y), axis=1)
def __getitem__(self, item):
return self.reg_term[item]
def __len__(self):
return len(self.reg_term)
class EstimatorDataset(Dataset):
def __init__(self, t, x, y):
self.t = t
self.x = x
self.y = y
def __getitem__(self, item):
return self.t[item], self.x[item], self.y[item]
def __len__(self):
return len(self.t)
def load_data(file_path):
data = pd.read_csv(file_path)
t = np.array(data['X1']).reshape((-1, 1))
s = np.array(data['S1']).reshape((-1, 1))
y = np.array(data['Y']).reshape((-1, 1))
x = np.array(data[['X2_' + str(i) for i in range(1, Config.confounds_num + 1)]])
gt = np.array(data['GT']).reshape((-1, 1))
t_train, t_test, x_train, x_test, y_train, y_test, s_train, s_test, gt_train, gt_test = train_test_split(
t, x, y, s, gt, test_size=0.40)
t_test, t_val, x_test, x_val, y_test, y_val, s_test, s_val, gt_test, gt_val = train_test_split(
t_test, x_test, y_test, s_test, gt_test, test_size=0.50)
return t_train, t_test, t_val, x_train, x_test, x_val, y_train, y_test, y_val, s_train, s_test, s_val, gt_train, gt_test, gt_val
def build_generator_dataset(t_train, t_test, t_val, x_train, x_test, x_val, y_train, y_test, y_val):
generator_train_dataset = GeneratorDataset(t_train, x_train, y_train)
generator_test_dataset = GeneratorDataset(t_test, x_test, y_test)
generator_val_dataset = GeneratorDataset(t_val, x_val, y_val)
return generator_train_dataset, generator_test_dataset, generator_val_dataset
def build_estimator_dataset(t_train, t_test, t_val, x_train, x_test, x_val, y_train, y_test, y_val):
estimator_train_dataset = EstimatorDataset(t_train, x_train, y_train)
estimator_test_dataset = EstimatorDataset(t_test, x_test, y_test)
estimator_val_dataset = EstimatorDataset(t_val, x_val, y_val)
return estimator_train_dataset, estimator_test_dataset, estimator_val_dataset
def build_cf_dataset(t_train, t_test, t_val, x_train, x_test, x_val, y_train, y_test, y_val):
t_train_cf = np.where(t_train == 1, 0, 1).reshape(-1, 1)
t_test_cf = np.where(t_test == 1, 0, 1).reshape(-1, 1)
t_val_cf = np.where(t_val == 1, 0, 1).reshape(-1, 1)
estimator_train_dataset = EstimatorDataset(t_train_cf, x_train, y_train)
estimator_test_dataset = EstimatorDataset(t_test_cf, x_test, y_test)
estimator_val_dataset = EstimatorDataset(t_val_cf, x_val, y_val)
return estimator_train_dataset, estimator_test_dataset, estimator_val_dataset
def train_vae(autoencoder, dataloader, bin_feats):
epochs = config.get('vae_epochs')
lr = config.get('encoder_lr')
wd = config.get('encoder_wd')
opt = torch.optim.Adam(autoencoder.parameters(), lr=lr, weight_decay=wd)
mse_func = nn.MSELoss(reduction='sum')
autoencoder.train()
writer = SummaryWriter()
for epoch in range(epochs):
loss_sum = 0
for t_x_y in dataloader:
t_x_y = t_x_y.to(device)
opt.zero_grad()
x_hat = autoencoder(t_x_y, bin_feats)
loss = mse_func(t_x_y.float(), x_hat) + autoencoder.encoder.kl
loss_sum += loss
loss.backward()
opt.step()
writer.add_scalar('VAE loss', loss_sum, epoch)
writer.close()
return autoencoder
def train_gan(label_generator, sample_generator, label_discriminator, sample_discriminator, obs_dataloader,
rep_dataloader, bin_feats):
epochs = config.get('gan_epochs')
gen_lr = config.get('generator_lr')
gen_wd = config.get('generator_wd')
dis_lr = config.get('discriminator_lr')
dis_wd = config.get('discriminator_wd')
opt_gen = torch.optim.Adam(chain(label_generator.parameters(), sample_generator.parameters()), lr=gen_lr,
weight_decay=gen_wd)
opt_dis = torch.optim.Adam(chain(label_discriminator.parameters(), sample_discriminator.parameters()), lr=dis_lr,
weight_decay=dis_wd)
opt_sgen = torch.optim.Adam(sample_generator.parameters(), lr=gen_lr,
weight_decay=gen_wd)
wasserstein_func = SinkhornDistance(0.1, 100, reduction='mean', device=device)
writer = SummaryWriter()
for epoch in range(epochs):
dis_loss_sum = 0
gen_loss_sum = 0
distance_sum = 0
label_generator.train()
sample_generator.train()
label_discriminator.train()
sample_discriminator.train()
rep_dataloader_iter = iter(rep_dataloader)
for index, data in enumerate(obs_dataloader):
try:
rep_t_x_y = next(rep_dataloader_iter).to(device)
except StopIteration:
rep_dataloader_iter = iter(rep_dataloader)
rep_t_x_y = next(rep_dataloader_iter).to(device)
obs_t_x_y = data.to(device)
normal_distribution = D.Normal(0, 1)
normal_distribution.loc = normal_distribution.loc.to(device)
normal_distribution.scale = normal_distribution.scale.to(device)
rep_probability_gen = label_generator(rep_t_x_y)
noise = normal_distribution.sample((len(obs_t_x_y), config.get('encoder_dim_latent')))
unselected_t_x_y_gen = sample_generator(noise, bin_feats)
loss3 = -torch.mean(torch.log(label_discriminator(obs_t_x_y) + 1e-4) + rep_probability_gen * torch.log(
1 - label_discriminator(rep_t_x_y) + 1e-4))
loss4 = -torch.mean((1 - rep_probability_gen) * torch.log(sample_discriminator(rep_t_x_y) + 1e-4) +
torch.log(1 - sample_discriminator(unselected_t_x_y_gen) + 1e-4))
dis_loss = loss4 + loss3
opt_dis.zero_grad()
dis_loss.backward()
opt_dis.step()
dis_loss_sum += dis_loss
rep_probability_gen = label_generator(rep_t_x_y)
noise = normal_distribution.sample((len(obs_t_x_y), config.get('encoder_dim_latent')))
unselected_t_x_y_gen = sample_generator(noise, bin_feats)
unsel_probability_gen = label_generator(unselected_t_x_y_gen)
loss1 = torch.mean((1 - unsel_probability_gen) * torch.log(
sample_discriminator(unselected_t_x_y_gen) + 1e-4) + rep_probability_gen * torch.log(
1 - label_discriminator(rep_t_x_y) + 1e-4) + unsel_probability_gen * torch.log(
1 - label_discriminator(unselected_t_x_y_gen) + 1e-4) + (1 - rep_probability_gen) * torch.log(
sample_discriminator(rep_t_x_y) + 1e-4))
loss2 = torch.mean(
unsel_probability_gen * torch.log(1 - label_discriminator(unselected_t_x_y_gen) + 1e-4) + torch.log(
1 - sample_discriminator(unselected_t_x_y_gen) + 1e-4) + (1 - unsel_probability_gen) * torch.log(
sample_discriminator(unselected_t_x_y_gen) + 1e-4))
gen_loss = loss1 + loss2
gen_loss_sum += gen_loss
opt_gen.zero_grad()
gen_loss.backward()
opt_gen.step()
rep_probability_gen = label_generator(rep_t_x_y)
labels = (rep_probability_gen >= 0.5)
n_gen = 2 + (len(labels) - torch.sum(labels)) / (torch.sum(labels) + 1) * len(obs_t_x_y)
noise = normal_distribution.sample(((n_gen.int()), config.get('encoder_dim_latent')))
unselected_t_x_y_gen = sample_generator(noise, bin_feats)
distance, _, _ = wasserstein_func(torch.cat((obs_t_x_y, unselected_t_x_y_gen), 0), rep_t_x_y)
distance = torch.abs(distance)
distance_sum += distance
opt_sgen.zero_grad()
distance.backward()
opt_sgen.step()
writer.add_scalar('Dis loss', dis_loss_sum, epoch)
writer.add_scalar('Gen loss', gen_loss_sum, epoch)
writer.add_scalar('Distance', distance_sum, epoch)
writer.close()
return label_generator, sample_generator, label_discriminator, sample_discriminator
def generate_labels(label_generator, data):
label_generator.eval()
with torch.no_grad():
data = data.to(device)
gen_label = label_generator(data)
return gen_label
def train_estimator_bnn(estimator, train_dataloader, val_dataloader):
epochs = config.get('est_epochs')
lr = config.get('est_lr')
weight_decay = config.get('est_wd')
ipm_weight = config.get('IPM_weight')
regression_loss_func = torch.nn.MSELoss(reduction='mean')
wasserstein_func = SinkhornDistance(0.1, 100, reduction='mean', device=device)
optimizer = torch.optim.Adam(estimator.parameters(), lr=lr, weight_decay=weight_decay)
writer = SummaryWriter()
for epoch in range(epochs):
loss_sum = 0
estimator.train()
for index, batch in enumerate(train_dataloader):
t, x, ground_truth = batch
t = t.to(device)
x = x.to(device)
ground_truth = ground_truth.to(device)
y_pre, t_rep, c_rep = estimator(t, x)
loss1 = regression_loss_func(y_pre.to(torch.float32), ground_truth.to(torch.float32))
loss2, _, _ = wasserstein_func(t_rep, c_rep)
loss = loss1 + ipm_weight * torch.abs(loss2)
loss_sum += loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
writer.add_scalar('Estimator Train loss', loss_sum, epoch)
loss_sum = 0
estimator.eval()
with torch.no_grad():
for index, batch in enumerate(val_dataloader):
t, x, ground_truth = batch
t = t.to(device)
x = x.to(device)
ground_truth = ground_truth.to(device)
y_pre, t_rep, c_rep = estimator(t, x)
loss1 = regression_loss_func(y_pre.to(torch.float32), ground_truth.to(torch.float32))
loss = loss1
loss_sum += loss
writer.add_scalar('Estimator Val loss', loss_sum, epoch)
writer.close()
return estimator
def test_estimator_bnn(estimator, t, x):
estimator.eval()
with torch.no_grad():
t1 = torch.tensor(t, dtype=torch.float32).to(device)
x1 = torch.tensor(x, dtype=torch.float32).to(device)
y_pre, _, _ = estimator(t1, x1)
y_pre = y_pre.detach().cpu().numpy()
return y_pre.reshape((-1, 1))
data_path = Config.data
res_list = []
for i in range(Config.experiment_num):
print("Data Preparation")
obs_file_path = data_path + '_obs.csv'
rep_file_path = data_path + '_rep.csv'
unselected_file_path = data_path + '_unsel.csv'
bin_feats = [0] + Config.bin_feats
rep_t_train, rep_t_test, rep_t_val, rep_x_train, rep_x_test, rep_x_val, rep_y_train, rep_y_test, rep_y_val, rep_s_train, rep_s_test, rep_s_val, rep_gt_train, rep_gt_test, rep_gt_val = load_data(
rep_file_path)
obs_t_train, obs_t_test, obs_t_val, obs_x_train, obs_x_test, obs_x_val, obs_y_train, obs_y_test, obs_y_val, obs_s_train, obs_s_test, obs_s_val, obs_gt_train, obs_gt_test, obs_gt_val = load_data(
obs_file_path)
unselected_t_train, unselected_t_test, unselected_t_val, unselected_x_train, unselected_x_test, unselected_x_val, unselected_y_train, unselected_y_test, unselected_y_val, unselected_s_train, unselected_s_test, unselected_s_val, unselected_gt_train, unselected_gt_test, unselected_gt_val = load_data(
unselected_file_path)
rep_generator_train_dataset, rep_generator_test_dataset, rep_generator_val_dataset = build_generator_dataset(
rep_t_train, rep_t_test, rep_t_val, rep_x_train, rep_x_test, rep_x_val, rep_y_train, rep_y_test, rep_y_val)
obs_generator_train_dataset, obs_generator_test_dataset, obs_generator_val_dataset = build_generator_dataset(
obs_t_train, obs_t_test, obs_t_val, obs_x_train, obs_x_test, obs_x_val, obs_y_train, obs_y_test, obs_y_val)
unsel_generator_train_dataset, unsel_generator_test_dataset, unsel_generator_val_dataset = build_generator_dataset(
unselected_t_train, unselected_t_test, unselected_t_val, unselected_x_train, unselected_x_test,
unselected_x_val, unselected_y_train, unselected_y_test, unselected_y_val)
print("Generate Samples")
rep_gen_train_dataloader = DataLoader(rep_generator_train_dataset, batch_size=config.get('gen_batch_num'),
shuffle=True, drop_last=False)
obs_gen_train_dataloader = DataLoader(obs_generator_train_dataset, batch_size=config.get('gen_batch_num'),
shuffle=True, drop_last=True)
vae = VariationalAutoencoder(config).to(device)
vae = train_vae(vae, rep_gen_train_dataloader, bin_feats)
sample_generator = vae.decoder
normal_distribution = D.Normal(0, 1)
normal_distribution.loc = normal_distribution.loc.to(device)
normal_distribution.scale = normal_distribution.scale.to(device)
sample_discriminator = Discriminator(config).to(device)
label_generator = Generator(config).to(device)
label_discriminator = Discriminator(config).to(device)
label_generator, sample_generator, label_discriminator, sample_discriminator = train_gan(label_generator,
sample_generator,
label_discriminator,
sample_discriminator,
obs_gen_train_dataloader,
rep_gen_train_dataloader,
bin_feats
)
generated_labels = generate_labels(label_generator,
torch.tensor(np.concatenate((rep_t_train, rep_x_train, rep_y_train), axis=1),
dtype=torch.float32))
labels = (generated_labels >= 0.5)
n_gen = 2 + (len(labels) - torch.sum(labels)) / (torch.sum(labels) + 1) * len(obs_t_train)
noise = normal_distribution.sample((n_gen.int(), config.get('encoder_dim_latent')))
generated_samples = sample_generator(noise, bin_feats)
generated_samples = generated_samples.detach().cpu().numpy()
rep_estimator_train_dataset, rep_estimator_test_dataset, rep_estimator_val_dataset = build_estimator_dataset(
rep_t_train, rep_t_test, rep_t_val, rep_x_train, rep_x_test, rep_x_val, rep_y_train, rep_y_test, rep_y_val)
obs_estimator_train_dataset, obs_estimator_test_dataset, obs_estimator_val_dataset = build_estimator_dataset(
obs_t_train, obs_t_test, obs_t_val, obs_x_train, obs_x_test, obs_x_val, obs_y_train, obs_y_test, obs_y_val)
obs_cf_train_dataset, obs_cf_test_dataset, obs_cf_val_dataset = build_cf_dataset(
obs_t_train, obs_t_test, obs_t_val, obs_x_train, obs_x_test, obs_x_val, obs_y_train, obs_y_test, obs_y_val)
gen_estimator_train_dataset, gen_estimator_test_dataset, gen_estimator_val_dataset = build_estimator_dataset(
np.concatenate((obs_t_train, generated_samples[:, 0].reshape(-1, 1), rep_t_train), axis=0),
obs_t_test, obs_t_val,
np.concatenate(
(obs_x_train, generated_samples[:, [i for i in range(1, Config.confounds_num + 1)]], rep_x_train), axis=0),
obs_x_test, obs_x_val,
np.concatenate((obs_y_train, generated_samples[:, Config.confounds_num + 1].reshape(-1, 1), rep_y_train),
axis=0),
obs_y_test, obs_y_val
)
gen_est_train_dataloader = DataLoader(gen_estimator_train_dataset, batch_size=config.get('est_batch_num'),
shuffle=True, drop_last=False)
gen_est_val_dataloader = DataLoader(gen_estimator_val_dataset, batch_size=config.get('est_batch_num') // 3,
shuffle=True, drop_last=False)
print("Train Estimator")
gan_estimator = BNN(config).to(device)
gan_estimator = train_estimator_bnn(gan_estimator, gen_est_train_dataloader, gen_est_val_dataloader)
gan_y_fact = test_estimator_bnn(gan_estimator, obs_t_test, obs_x_test)
gan_y_cf = test_estimator_bnn(gan_estimator, 1 - obs_t_test, obs_x_test)
unsel_gan_y_fact = test_estimator_bnn(gan_estimator, unselected_t_test, unselected_x_test)
unsel_gan_y_cf = test_estimator_bnn(gan_estimator, 1 - unselected_t_test, unselected_x_test)
ite_gan = np.where(obs_t_test == 1, gan_y_fact - gan_y_cf, gan_y_cf - gan_y_fact).reshape(-1, 1)
unsel_ite_gan = np.where(unselected_t_test == 1, unsel_gan_y_fact - unsel_gan_y_cf,
unsel_gan_y_cf - unsel_gan_y_fact).reshape(-1, 1)
res_list.append(np.sqrt(np.mean(np.square(ite_gan - obs_gt_test))))
res_list.append(np.sqrt(np.mean(np.square(unsel_ite_gan - unselected_gt_test))))
if device == 'cuda':
torch.cuda.empty_cache()
res_list = np.array(res_list).reshape(-1, 2)
sd = np.std(res_list, axis=0).reshape(res_list.shape[1], 1)
mae = np.mean(np.abs(res_list), axis=0).reshape(res_list.shape[1], 1)
np.savetxt('res/result.txt', np.concatenate((mae, sd), 0))