-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain_OE.py
255 lines (210 loc) · 8.34 KB
/
main_OE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import os
import sys
import pathlib
import random
import time
import numpy as np
import sklearn.metrics as sk
from torch.utils.tensorboard import SummaryWriter
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from utils.conv_type import FixedSubnetConv, SampleSubnetConv
from utils.logging import AverageMeter, ProgressMeter
from utils.net_utils import (
set_model_prune_rate,
freeze_model_weights,
save_checkpoint,
get_lr,
LabelSmoothing,
get_trainer,
get_dataset,
get_criterion,
get_model,
get_optimizer,
get_directories,
_run_dir_exists,
write_result_to_csv,
set_gpu,
resume,
pretrained,
select_ood_opt,
select_ood
)
from utils.schedulers import get_policy
from utils.get_scores import measures, ood_measure
from utils.neural_linear_opt import NeuralLinear, SimpleDataset
import importlib
import data
import models
from utils.custom_loss import CustomLoss
from args import args
def main():
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
# Simply call main_worker function
main_worker(args)
def main_worker(args):
# Set up directories
run_base_dir, ckpt_base_dir, log_base_dir = get_directories(args)
args.ckpt_base_dir = ckpt_base_dir
if args.set == "CIFAR10" or args.set == "CIFAR100":
args.normalizer = transforms.Normalize(mean=[x/255.0 for x in [125.3, 123.0, 113.9]], std=[x/255.0 for x in [63.0, 62.1, 66.7]])
else:
args.normalizer = None
print("\n" + time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + "\n")
print(args)
args.gpu = None
train, validate, modifier = get_trainer(args)
if args.multigpu is not None:
print("Use GPU: {} for training".format(args.multigpu))
data = get_dataset(args.set)
ood_loaders = [get_dataset(dataset).val_loader for dataset in args.ood_set]
measure = ood_measure(data.val_loader, ood_loaders, msp=args.msp, energy=args.energy, odin=args.odin, mahalanobis=args.mahalanobis)
ood_dataset_size = int(len(data.train_loader.dataset) * args.ood_factor)
print('OOD Dataset Size: ', ood_dataset_size)
# create model and optimizer
model = get_model(args)
full_model = get_model(args, full=True)
if args.pretrained:
pretrained(args, model)
pretrained(args, full_model)
repr_dim = model.repr_dim
model = set_gpu(args, model)
full_model = set_gpu(args, full_model)
criterion = get_criterion(args)
bayes_nn = NeuralLinear(args, model, repr_dim, output_dim = 1)
cudnn.benchmark = True
optimizer = get_optimizer(args, model)
lr_policy = get_policy(args.lr_policy)(optimizer, args)
# optionally resume from a checkpoint
best_acc1 = 0.0
best_acc5 = 0.0
best_train_acc1 = 0.0
best_train_acc5 = 0.0
if args.resume:
best_acc1 = resume(args, model, optimizer)
# Data loading code
if args.evaluate:
acc1, acc5 = validate(data.val_loader, model, criterion, args, writer=None, epoch=args.start_epoch)
measure.ood_metrics(model, args.epochs, data.train_loader)
return
writer = SummaryWriter(log_dir=log_base_dir)
epoch_time = AverageMeter("epoch_time", ":.4f", write_avg=False)
validation_time = AverageMeter("validation_time", ":.4f", write_avg=False)
train_time = AverageMeter("train_time", ":.4f", write_avg=False)
progress_overall = ProgressMeter(
1, [epoch_time, validation_time, train_time], prefix="Overall Timing"
)
end_epoch = time.time()
args.start_epoch = args.start_epoch or 0
acc1 = None
# Save the initial state
save_checkpoint(
{
"epoch": 0,
"arch": args.arch,
"state_dict": model.state_dict(),
"best_acc1": best_acc1,
"best_acc5": best_acc5,
"best_train_acc1": best_train_acc1,
"best_train_acc5": best_train_acc5,
"optimizer": optimizer.state_dict(),
"curr_acc1": acc1 if acc1 else "Not evaluated",
},
False,
filename=ckpt_base_dir / f"initial.state",
save=False,
)
print('---------------------------------before training---------------------------------')
bayes_nn.sample_BDQN()
start_validation = time.time()
acc1, acc5 = validate(data.val_loader, model, criterion, args, writer, -1)
validation_time.update((time.time() - start_validation) / 60)
# if (0) % args.save_every == 0:
# print("checking the OOD performance of the initial model ...")
# measure.ood_metrics(model, 0, data.train_loader)
# Start training
ood_loader = get_dataset(args.auxiliary_dataset).train_loader
if args.oe_ood_method in ['oe', 'energy', 'doe']:
selected_ood_loader = select_ood(ood_loader, args.batch_size * args.ood_factor, args.num_classes, args.pool_size, ood_dataset_size)
if args.oe_ood_method == 'doe':
tmp1, tmp2 = args.droprate, args.lr
args.droprate = 0
args.lr = 1
proxy = get_model(args)
proxy = set_gpu(args, proxy)
proxy_optim = get_optimizer(args, proxy)
args.droprate = tmp1
args.lr = tmp2
for epoch in range(args.start_epoch, args.epochs):
# print(f'Epoch: [{epoch}]')
lr_policy(epoch, iteration=None)
cur_lr = get_lr(optimizer)
# train for one epoch
if args.oe_ood_method == 'poem':
selected_ood_loader = select_ood_opt(ood_loader, bayes_nn, args.batch_size * args.ood_factor, args.num_classes, args.pool_size, ood_dataset_size)
start_train = time.time()
bayes_nn.train_blr(data.train_loader, selected_ood_loader, criterion, optimizer, epoch)
bayes_nn.update_representation()
bayes_nn.update_bays_reg_BDQN()
bayes_nn.sample_BDQN()
elif args.oe_ood_method in ['oe', 'energy']:
start_train = time.time()
bayes_nn.train_oe(data.train_loader, selected_ood_loader, criterion, optimizer, epoch)
elif args.oe_ood_method == 'doe':
start_train = time.time()
bayes_nn.train_doe(data.train_loader, selected_ood_loader, criterion, optimizer, epoch, proxy, proxy_optim)
train_time.update((time.time() - start_train) / 60)
# if (epoch + 1) % (args.save_every * 5) == 0:
# measure.ood_metrics(model, epoch+1, data.train_loader)
# evaluate on validation set
start_validation = time.time()
acc1, acc5 = validate(data.val_loader, model, criterion, args, writer, epoch)
# acc1 = bayes_nn.validate(val_loader, model, criterion, epoch)
validation_time.update((time.time() - start_validation) / 60)
# remember best acc@1 and save checkpoint
is_best = acc1 > best_acc1
best_acc1 = max(acc1, best_acc1)
best_acc5 = max(acc5, best_acc5)
save = ((epoch % args.save_every) == 0) and args.save_every > 0
if is_best or save or epoch == args.epochs - 1:
if is_best:
print(f"==> New best, saving at {ckpt_base_dir / 'model_best.pth'}")
save_checkpoint(
{
"epoch": epoch + 1,
"arch": args.arch,
"state_dict": model.state_dict(),
"best_acc1": best_acc1,
"best_acc5": best_acc5,
"optimizer": optimizer.state_dict(),
"curr_acc1": acc1,
"curr_acc5": acc5,
},
is_best,
filename=ckpt_base_dir / f"epoch_{epoch}.state",
save=save,
)
epoch_time.update((time.time() - end_epoch) / 60)
progress_overall.display(epoch)
progress_overall.write_to_tensorboard(
writer, prefix="diagnostics", global_step=epoch
)
writer.add_scalar("test/lr", cur_lr, epoch)
end_epoch = time.time()
if args.final:
measure.ood_metrics(model, args.epochs, data.train_loader)
if __name__ == "__main__":
main()