-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathIAD-I.py
263 lines (229 loc) · 11.1 KB
/
IAD-I.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
from __future__ import print_function
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torchvision
import torchvision.transforms as transforms
import numpy as np
import os
import argparse
import time
from tqdm import tqdm
from utils import Logger
from models import *
parser = argparse.ArgumentParser(description='IAD-I')
parser.add_argument('--lr', default=0.1, type=float, help='learning rate')
parser.add_argument('--lr_schedule', type=int, nargs='+', default=[100, 150], help='Decrease learning rate at these epochs.')
parser.add_argument('--lr_factor', default=0.1, type=float, help='factor by which to decrease lr')
parser.add_argument('--epochs', default=200, type=int, help='number of epochs for training')
parser.add_argument('--output', default = '', type=str, help='output subdirectory')
parser.add_argument('--model', default = 'ResNet18', type = str, help = 'student model name')
parser.add_argument('--teacher_model', default = 'ResNet18', type = str, help = 'teacher network model')
parser.add_argument('--teacher_path', default = './pre_train/AT_teacher_cifar10/bestpoint.pth.tar', type=str, help='path of teacher net being distilled')
parser.add_argument('--temp', default=1.0, type=float, help='temperature for distillation')
parser.add_argument('--val_period', default=1, type=int, help='print every __ epoch')
parser.add_argument('--save_period', default=1, type=int, help='save every __ epoch')
parser.add_argument('--alpha', default=1.0, type=float, help='weight for sum of losses')
parser.add_argument('--dataset', default = 'CIFAR10', type=str, help='name of dataset')
parser.add_argument('--out-dir',type=str,default='./IAD_I_CIFAR10',help='dir of output')
parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed')
parser.add_argument('--resume',type=str,default=None,help='whether to resume training')
parser.add_argument('--beta',type=float, default=0.1)
parser.add_argument('--begin',type=int, default=60)
args = parser.parse_args()
seed = args.seed
out_dir = args.out_dir
torch.manual_seed(seed)
np.random.seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = True
device = 'cuda' if torch.cuda.is_available() else 'cpu'
def adjust_learning_rate(optimizer, epoch, lr):
if epoch in args.lr_schedule:
lr *= args.lr_factor
for param_group in optimizer.param_groups:
param_group['lr'] = lr
# Store path
if not os.path.exists(out_dir):
os.makedirs(out_dir)
# Save checkpoint
def save_checkpoint(state, checkpoint=out_dir, filename='checkpoint.pth.tar'):
filepath = os.path.join(checkpoint, filename)
torch.save(state, filepath)
# prepare the dataset
print('==> Preparing data..')
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
])
if args.dataset == 'CIFAR10':
trainset = torchvision.datasets.CIFAR10(root='~/data/cifar-10', train=True, download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='~/data/cifar-10', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=128, shuffle=False, num_workers=2)
num_classes = 10
elif args.dataset == 'CIFAR100':
trainset = torchvision.datasets.CIFAR100(root='~/data/cifar-100', train=True, download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR100(root='~/data/cifar-100', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=128, shuffle=False, num_workers=2)
num_classes = 100
class AttackPGD(nn.Module):
def __init__(self, basic_net, config):
super(AttackPGD, self).__init__()
self.basic_net = basic_net
self.step_size = config['step_size']
self.epsilon = config['epsilon']
self.num_steps = config['num_steps']
def forward(self, inputs, targets):
x = inputs.detach()
x = x + torch.zeros_like(x).uniform_(-self.epsilon, self.epsilon)
for i in range(self.num_steps):
x.requires_grad_()
with torch.enable_grad():
loss = F.cross_entropy(self.basic_net(x), targets, size_average=False)
grad = torch.autograd.grad(loss, [x])[0]
x = x.detach() + self.step_size*torch.sign(grad.detach())
x = torch.min(torch.max(x, inputs - self.epsilon), inputs + self.epsilon)
x = torch.clamp(x, 0.0, 1.0)
return self.basic_net(x), x
# build teacher and student models
# dataparalella
print('==> Building model..'+args.model)
# student
if args.model == 'MobileNetV2':
basic_net = MobileNetV2(num_classes=num_classes)
elif args.model == 'WideResNet':
basic_net = WideResNet(num_classes=num_classes)
elif args.model == 'ResNet18':
basic_net = ResNet18(num_classes=num_classes)
basic_net = basic_net.to(device)
basic_net = torch.nn.DataParallel(basic_net)
# teacher
if args.teacher_path != '':
if args.teacher_model == 'MobileNetV2':
teacher_net = MobileNetV2(num_classes=num_classes)
elif args.teacher_model == 'WideResNet':
teacher_net = WideResNet(num_classes=num_classes)
elif args.teacher_model == 'ResNet18':
teacher_net = ResNet18(num_classes=num_classes)
teacher_net = teacher_net.to(device)
for param in teacher_net.parameters():
param.requires_grad = False
config_train = {
'epsilon': 8 / 255,
'num_steps': 10,
'step_size': 2 / 255,
}
net = AttackPGD(basic_net, config_train)
if device == 'cuda':
cudnn.benchmark = True
print('==> Loading teacher..')
teacher_net = torch.nn.DataParallel(teacher_net)
teacher_net.load_state_dict(torch.load(args.teacher_path)['state_dict'])
teacher_net.eval()
KL_loss = nn.KLDivLoss(reduce=False)
XENT_loss = nn.CrossEntropyLoss()
lr=args.lr
def train(epoch, optimizer, net, basic_net, teacher_net):
torch.cuda.synchronize()
start = time.time()
net.train()
train_loss = 0
iterator = tqdm(trainloader, ncols=0, leave=False)
for batch_idx, (inputs, targets) in enumerate(iterator):
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
teacher_outputs = teacher_net(inputs)
outputs, pert_inputs = net(inputs, targets)
Alpha = torch.ones(len(inputs)).cuda()
basicop = basic_net(pert_inputs).detach()
guide = teacher_net(pert_inputs)
if epoch >= args.begin:
for pp in range(len(outputs)):
L = F.softmax(guide, dim=1)[pp][targets[pp].item()]
L = L.pow(args.beta).item()
Alpha[pp] = L
loss = args.alpha*args.temp*args.temp*(1/len(outputs))*torch.sum(KL_loss(F.log_softmax(outputs/args.temp, dim=1),F.softmax(teacher_outputs/args.temp, dim=1)).sum(dim=1)) + args.alpha*(1/len(outputs))*torch.sum(KL_loss(F.log_softmax(outputs, dim=1),F.softmax(basic_net(inputs), dim=1)).sum(dim=1).mul(1-Alpha))+(1.0-args.alpha)*XENT_loss(basic_net(inputs), targets)
else:
loss = args.alpha*args.temp*args.temp*(1/len(outputs))*torch.sum(KL_loss(F.log_softmax(outputs/args.temp, dim=1),F.softmax(teacher_outputs/args.temp, dim=1)).sum(dim=1))+(1.0-args.alpha)*XENT_loss(basic_net(inputs), targets)
loss.backward()
optimizer.step()
train_loss += loss.item()
iterator.set_description(str(loss.item()))
torch.cuda.synchronize()
end = time.time()
print(end-start)
print('Mean Training Loss:', train_loss/len(iterator))
return train_loss
def test(epoch, optimizer, net, basic_net, teacher_net):
net.eval()
adv_correct = 0
natural_correct = 0
total = 0
with torch.no_grad():
iterator = tqdm(testloader, ncols=0, leave=False)
for batch_idx, (inputs, targets) in enumerate(iterator):
inputs, targets = inputs.to(device), targets.to(device)
adv_outputs, pert_inputs = net(inputs, targets)
natural_outputs = basic_net(inputs)
_, adv_predicted = adv_outputs.max(1)
_, natural_predicted = natural_outputs.max(1)
natural_correct += natural_predicted.eq(targets).sum().item()
total += targets.size(0)
adv_correct += adv_predicted.eq(targets).sum().item()
iterator.set_description(str(adv_predicted.eq(targets).sum().item()/targets.size(0)))
robust_acc = 100.*adv_correct/total
natural_acc = 100.*natural_correct/total
print('Natural acc:', natural_acc)
print('Robust acc:', robust_acc)
return natural_acc, robust_acc
def main():
lr = args.lr
best_acc = 0
test_robust = 0
stu_r = 0
tea_r = 0
mark = 1
optimizer = optim.SGD(net.parameters(), lr=lr, momentum=0.9, weight_decay=2e-4)
logger_test = Logger(os.path.join(out_dir, 'student_results.txt'), title='student')
logger_test_teacher = Logger(os.path.join(out_dir, 'teacher_results.txt'), title='teacher')
logger_test.set_names(['Epoch', 'Natural Test Acc', 'PGD10 Acc', 'T or S'])
logger_test_teacher.set_names(['Epoch', 'Natural Test Acc', 'PGD10 Acc', 'T or S'])
for epoch in range(args.epochs):
adjust_learning_rate(optimizer, epoch, lr)
print("teacher >>>> student ")
mark = 1
train_loss = train(epoch, optimizer, net, basic_net, teacher_net)
if (epoch+1)%args.val_period == 0:
natural_val, robust_val = test(epoch, optimizer, net, basic_net, teacher_net)
natural_val_t, robust_val_t = 0, 0
logger_test.append([epoch + 1, natural_val, robust_val, mark])
logger_test_teacher.append([epoch + 1, natural_val_t, robust_val_t, mark])
stu_r = robust_val
tea_r = robust_val_t
save_checkpoint({
'epoch': epoch + 1,
'test_nat_acc': natural_val,
'test_pgd10_acc': robust_val,
'state_dict': basic_net.state_dict(),
'optimizer' : optimizer.state_dict(),
})
if robust_val > best_acc:
best_acc = robust_val
save_checkpoint({
'epoch': epoch + 1,
'state_dict': basic_net.state_dict(),
'test_nat_acc': natural_val,
'test_pgd10_acc': robust_val,
'optimizer' : optimizer.state_dict(),
},filename='bestpoint.pth.tar')
if __name__ == '__main__':
main()