forked from Project-MONAI/MONAI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_deepgrow_dataset.py
55 lines (44 loc) · 2.15 KB
/
test_deepgrow_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
# Copyright 2020 - 2021 MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import tempfile
import unittest
import nibabel as nib
import numpy as np
from monai.apps.deepgrow.dataset import create_dataset
class TestCreateDataset(unittest.TestCase):
def _create_data(self, tempdir):
affine = np.eye(4)
image = np.random.randint(0, 2, size=(128, 128, 40))
image_file = os.path.join(tempdir, "image1.nii.gz")
nib.save(nib.Nifti1Image(image, affine), image_file)
label = np.zeros((128, 128, 40))
label[0][1][0] = 1
label[0][1][1] = 1
label[0][0][2] = 1
label[0][1][2] = 1
label_file = os.path.join(tempdir, "label1.nii.gz")
nib.save(nib.Nifti1Image(label, affine), label_file)
return [{"image": image_file, "label": label_file}]
def test_create_dataset_2d(self):
with tempfile.TemporaryDirectory() as tempdir:
datalist = self._create_data(tempdir)
output_dir = os.path.join(tempdir, "2d")
deepgrow_datalist = create_dataset(datalist=datalist, output_dir=output_dir, dimension=2, pixdim=(1, 1))
assert len(deepgrow_datalist) == 3 and deepgrow_datalist[0]["region"] == 1
def test_create_dataset_3d(self):
with tempfile.TemporaryDirectory() as tempdir:
datalist = self._create_data(tempdir)
output_dir = os.path.join(tempdir, "3d")
deepgrow_datalist = create_dataset(datalist=datalist, output_dir=output_dir, dimension=3, pixdim=(1, 1, 1))
assert len(deepgrow_datalist) == 1 and deepgrow_datalist[0]["region"] == 1
if __name__ == "__main__":
unittest.main()