forked from Project-MONAI/MONAI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
271 lines (226 loc) · 9.49 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
# Copyright 2020 - 2021 MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os
from typing import Dict, List
import numpy as np
from monai.transforms import AsChannelFirstd, Compose, LoadImaged, Orientationd, Spacingd
from monai.utils import GridSampleMode
def create_dataset(
datalist,
output_dir: str,
dimension,
pixdim,
image_key: str = "image",
label_key: str = "label",
base_dir=None,
limit: int = 0,
relative_path: bool = False,
transforms=None,
) -> List[Dict]:
"""
Utility to pre-process and create dataset list for Deepgrow training over on existing one.
The input data list is normally a list of images and labels (3D volume) that needs pre-processing
for Deepgrow training pipeline.
Args:
datalist: A generic dataset with a length property which normally contains a list of data dictionary.
For example, typical input data can be a list of dictionaries::
[{'image': 'img1.nii', 'label': 'label1.nii'}]
output_dir: target directory to store the training data for Deepgrow Training
pixdim: output voxel spacing.
dimension: dimension for Deepgrow training. It can be 2 or 3.
image_key: image key in input datalist. Defaults to 'image'.
label_key: label key in input datalist. Defaults to 'label'.
base_dir: base directory in case related path is used for the keys in datalist. Defaults to None.
limit: limit number of inputs for pre-processing. Defaults to 0 (no limit).
relative_path: output keys values should be based on relative path. Defaults to False.
transforms: explicit transforms to execute operations on input data.
Raises:
ValueError: When ``dimension`` is not one of [2, 3]
ValueError: When ``datalist`` is Empty
Returns:
A new datalist that contains path to the images/labels after pre-processing.
Example::
datalist = create_dataset(
datalist=[{'image': 'img1.nii', 'label': 'label1.nii'}],
base_dir=None,
output_dir=output_2d,
dimension=2,
image_key='image',
label_key='label',
pixdim=(1.0, 1.0),
limit=0,
relative_path=True
)
print(datalist[0]["image"], datalist[0]["label"])
"""
if dimension not in [2, 3]:
raise ValueError("Dimension can be only 2 or 3 as Deepgrow supports only 2D/3D Training")
if not len(datalist):
raise ValueError("Input datalist is empty")
transforms = _default_transforms(image_key, label_key, pixdim) if transforms is None else transforms
new_datalist = []
for idx in range(len(datalist)):
if limit and idx >= limit:
break
image = datalist[idx][image_key]
label = datalist[idx].get(label_key, None)
if base_dir:
image = os.path.join(base_dir, image)
label = os.path.join(base_dir, label) if label else None
image = os.path.abspath(image)
label = os.path.abspath(label) if label else None
logging.info("Image: {}; Label: {}".format(image, label if label else None))
data = transforms({image_key: image, label_key: label})
if dimension == 2:
data = _save_data_2d(
vol_idx=idx,
vol_image=data[image_key],
vol_label=data[label_key],
dataset_dir=output_dir,
relative_path=relative_path,
)
else:
data = _save_data_3d(
vol_idx=idx,
vol_image=data[image_key],
vol_label=data[label_key],
dataset_dir=output_dir,
relative_path=relative_path,
)
new_datalist.extend(data)
return new_datalist
def _default_transforms(image_key, label_key, pixdim):
keys = [image_key] if label_key is None else [image_key, label_key]
mode = [GridSampleMode.BILINEAR, GridSampleMode.NEAREST] if len(keys) == 2 else [GridSampleMode.BILINEAR]
return Compose(
[
LoadImaged(keys=keys),
AsChannelFirstd(keys=keys),
Spacingd(keys=keys, pixdim=pixdim, mode=mode),
Orientationd(keys=keys, axcodes="RAS"),
]
)
def _save_data_2d(vol_idx, vol_image, vol_label, dataset_dir, relative_path):
data_list = []
if len(vol_image.shape) == 4:
logging.info(
"4D-Image, pick only first series; Image: {}; Label: {}".format(
vol_image.shape, vol_label.shape if vol_label else None
)
)
vol_image = vol_image[0]
vol_image = np.moveaxis(vol_image, -1, 0)
image_count = 0
label_count = 0
unique_labels_count = 0
for sid in range(vol_image.shape[0]):
image = vol_image[sid, ...]
label = vol_label[sid, ...] if vol_label is not None else None
if vol_label is not None and np.sum(label) == 0:
continue
image_file_prefix = "vol_idx_{:0>4d}_slice_{:0>3d}".format(vol_idx, sid)
image_file = os.path.join(dataset_dir, "images", image_file_prefix)
image_file += ".npy"
os.makedirs(os.path.join(dataset_dir, "images"), exist_ok=True)
np.save(image_file, image)
image_count += 1
# Test Data
if vol_label is None:
data_list.append(
{
"image": image_file.replace(dataset_dir + "/", "") if relative_path else image_file,
}
)
continue
# For all Labels
unique_labels = np.unique(label.flatten())
unique_labels = unique_labels[unique_labels != 0]
unique_labels_count = max(unique_labels_count, len(unique_labels))
for idx in unique_labels:
label_file_prefix = "{}_region_{:0>2d}".format(image_file_prefix, int(idx))
label_file = os.path.join(dataset_dir, "labels", label_file_prefix)
label_file += ".npy"
os.makedirs(os.path.join(dataset_dir, "labels"), exist_ok=True)
curr_label = (label == idx).astype(np.float32)
np.save(label_file, curr_label)
label_count += 1
data_list.append(
{
"image": image_file.replace(dataset_dir + "/", "") if relative_path else image_file,
"label": label_file.replace(dataset_dir + "/", "") if relative_path else label_file,
"region": int(idx),
}
)
logging.info(
"{} => Image Shape: {} => {}; Label Shape: {} => {}; Unique Labels: {}".format(
vol_idx,
vol_image.shape,
image_count,
vol_label.shape if vol_label is not None else None,
label_count,
unique_labels_count,
)
)
return data_list
def _save_data_3d(vol_idx, vol_image, vol_label, dataset_dir, relative_path):
data_list = []
if len(vol_image.shape) == 4:
logging.info("4D-Image, pick only first series; Image: {}; Label: {}".format(vol_image.shape, vol_label.shape))
vol_image = vol_image[0]
vol_image = np.moveaxis(vol_image, -1, 0)
image_count = 0
label_count = 0
unique_labels_count = 0
image_file_prefix = "vol_idx_{:0>4d}".format(vol_idx)
image_file = os.path.join(dataset_dir, "images", image_file_prefix)
image_file += ".npy"
os.makedirs(os.path.join(dataset_dir, "images"), exist_ok=True)
np.save(image_file, vol_image)
image_count += 1
# Test Data
if vol_label is None:
data_list.append(
{
"image": image_file.replace(dataset_dir + "/", "") if relative_path else image_file,
}
)
else:
# For all Labels
unique_labels = np.unique(vol_label.flatten())
unique_labels = unique_labels[unique_labels != 0]
unique_labels_count = max(unique_labels_count, len(unique_labels))
for idx in unique_labels:
label_file_prefix = "{}_region_{:0>2d}".format(image_file_prefix, int(idx))
label_file = os.path.join(dataset_dir, "labels", label_file_prefix)
label_file += ".npy"
curr_label = (vol_label == idx).astype(np.float32)
os.makedirs(os.path.join(dataset_dir, "labels"), exist_ok=True)
np.save(label_file, curr_label)
label_count += 1
data_list.append(
{
"image": image_file.replace(dataset_dir + "/", "") if relative_path else image_file,
"label": label_file.replace(dataset_dir + "/", "") if relative_path else label_file,
"region": int(idx),
}
)
logging.info(
"{} => Image Shape: {} => {}; Label Shape: {} => {}; Unique Labels: {}".format(
vol_idx,
vol_image.shape,
image_count,
vol_label.shape if vol_label is not None else None,
label_count,
unique_labels_count,
)
)
return data_list