-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAlgorithm 2.py
247 lines (210 loc) · 7.72 KB
/
Algorithm 2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import os
import numpy as np
import matplotlib.pyplot as plt
import cv2
import pywt
import pickle
import winsound
import pywt.data
from scipy.fftpack import dct, idct
from skimage import data
from skimage.util import img_as_ubyte
from skimage.filters.rank import entropy
from skimage.morphology import disk
from sklearn import datasets
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from joblib import dump, load
jaffeDatabase = []
jaffeDatabase0 = []
jaffeDatabase1 = []
jaffeDatabase2 = []
jaffeDatabase3 = []
jaffeDatabase4 = []
jaffeDatabase5 = []
jaffeDatabase6 = []
jaffeTarget = []
directory = "F:\\University\\Y3\\S2\\Final Project\\Code\\JAFFE\\"
directory2 = "F:\\University\\Y3\\S2\\Final Project\\Code\\CK+\\"
folders = ["AN", "DI", "FE", "HA", "NE", "SA", "SU"]
folders2 = ["AN", "DI", "FE", "HA", "SA", "SU"]
blockSizes = [32, 16, 8]
def CLAHE(original):
claheFinal = cv2.resize(original, (50, 50))
claheGreyScale = cv2.cvtColor(claheFinal, cv2.COLOR_BGR2GRAY)
clahe = cv2.createCLAHE(clipLimit = 5)
claheFinal = clahe.apply(claheGreyScale)
return claheFinal
def HaarTransformation(claheFinal):
titles = ['Approximation', ' Horizontal detail',
'Vertical detail', 'Diagonal detail']
coeffs2 = pywt.dwt2(claheFinal, 'bior1.3')
LL, (LH, HL, HH) = coeffs2
return LH
def DiscreteCosineTransformation(Input, switch):
result = None
def Image():
dctImg = dct(Input)
return dctImg
def List():
dctList = [[],[],[]]
i = 0
for element in Input:
for img in element:
dctList[i].append(dct(img))
i = i + 1
return dctList
if switch == 0:
result = Image()
else:
result = List()
return result
def ImagePyramid(claheFinal):
lowRes1 = cv2.pyrDown(claheFinal)
lowRes2 = cv2.pyrDown(lowRes1)
return lowRes1, lowRes2
def ImageDivider(blockSizes, claheFinal, lowRes1, lowRes2):
imgList = [claheFinal, lowRes1, lowRes2]
grey_levels = 256
originalWindows = []
lowResWindows = []
lowestResWindows = []
windowsList = [originalWindows, lowResWindows, lowestResWindows]
x = 0
for img in imgList:
windowsize_r = blockSizes[x]
windowsize_c = blockSizes[x]
for r in range(0,img.shape[0] - windowsize_r, windowsize_r):
for c in range(0,img.shape[1] - windowsize_c, windowsize_c):
windowsList[x].append(img[r:r+windowsize_r,c:c+windowsize_c])
x = x + 1
return originalWindows, lowResWindows, lowestResWindows
def Entropy(originalWindows, lowResWindows, lowestResWindows):
originalInformative = []
lowResInformative = []
lowestResInformative = []
informativeLists = [originalInformative, lowResInformative, lowestResInformative]
inputList = [originalWindows, lowResWindows, lowestResWindows]
x = 0
while x < 3:
for img in inputList[x]:
entropyImg = entropy(img, disk(6))
entropyMean = np.mean(entropyImg)
if 3 <= entropyMean <= 8:
informativeLists[x].append(img)
x = x + 1
return originalInformative, lowResInformative, lowestResInformative
def TrainSVM(X, y):
print("A")
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
svm_model_linear = SVC(kernel = 'linear', C = 1).fit(X_train, y_train)
print("A")
dump(svm_model_linear, 'SVM JAFFE.joblib')
def SVM(x, y):
svm_model_linear = load('SVM JAFFE.joblib')
svm_predictions = svm_model_linear.predict(x)
f = open("A.txt", "w")
f.write(str(y))
f.write(str(svm_predictions))
f.close()
accuracy = svm_model_linear.score(x, y)
print(accuracy)
cm = confusion_matrix(y, svm_predictions)
print(cm)
winsound.Beep(300, 150)
def Preprocess():
i = 0
for folder in folders2:
x = 0
for filename in os.scandir(directory2 + folder):
original = cv2.imread(str(filename.path))
claheFinal = CLAHE(original)
lowRes1, lowRes2 = ImagePyramid(claheFinal)
originalWindows, lowResWindows, lowestResWindows = ImageDivider(blockSizes, claheFinal, lowRes1, lowRes2)
originalInformative, lowResInformative, lowestResInformative = Entropy(originalWindows, lowResWindows, lowestResWindows)
dctOI = DiscreteCosineTransformation(originalInformative, 0)
dctLRI = DiscreteCosineTransformation(lowResInformative, 0)
dctLWRI = DiscreteCosineTransformation(lowestResInformative, 0)
htInput = HaarTransformation(claheFinal)
dctOutput = DiscreteCosineTransformation(htInput, 0)
finalVector1 = []
for lists in dctOutput:
for element in lists:
finalVector1.append(element)
finalVector2 = []
dctOITMP = []
dctLRITMP = []
dctLWRITMP = []
for lists in dctOI:
for element in lists:
for ele in element:
dctOITMP.append(ele)
for lists in dctLRI:
for element in lists:
for ele in element:
dctLRITMP.append(ele)
for lists in dctLWRI:
for element in lists:
for ele in element:
dctLWRITMP.append(ele)
while len(dctOITMP) < 50176:
dctOITMP.append(0)
finalVector2 = dctOITMP + dctLRITMP + dctLWRITMP
finalVector = finalVector1 + finalVector2
if i == 0:
jaffeDatabase0.append(finalVector)
if i == 1:
jaffeDatabase1.append(finalVector)
if i == 2:
jaffeDatabase2.append(finalVector)
if i == 3:
jaffeDatabase3.append(finalVector)
if i == 4:
jaffeDatabase4.append(finalVector)
if i == 5:
jaffeDatabase5.append(finalVector)
if i == 6:
jaffeDatabase6.append(finalVector)
jaffeTarget.append(i)
print(x)
x = x + 1
print(i)
i = i + 1
def writeToFileDB(filename, fTW0, fTW1, fTW2, fTW3, fTW4, fTW5, fTW6):
array = []
array.append(fTW0)
array.append(fTW1)
array.append(fTW2)
array.append(fTW3)
array.append(fTW4)
array.append(fTW5)
array.append(fTW6)
i = 0
for element in array:
with open(filename + str(i) + ".txt", 'wb') as fp:
pickle.dump(element, fp)
i = i + 1
def writeToFileT(filename, fileToWrite):
with open(filename, 'wb') as fp:
pickle.dump(fileToWrite, fp)
def readFromFile(filename):
with open (filename, 'rb') as fp:
array = pickle.load(fp)
return array
def loadDatabase(filename):
i = 0
tDB = []
tDB2 = []
while i < 7:
tDB.append(readFromFile(filename + str(i) + ".txt"))
i = i + 1
tDB2 = tDB[0] + tDB[1] + tDB[2] + tDB[3] + tDB[4] + tDB[5] + tDB[6]
return tDB2
#Preprocess()
#writeToFileDB("SVM - CK+ Database", jaffeDatabase0, jaffeDatabase1, jaffeDatabase2, jaffeDatabase3, jaffeDatabase4, jaffeDatabase5, jaffeDatabase6)
#writeToFileT("SVM - CK+ Targets.txt", jaffeTarget)
jaffeDatabase = loadDatabase("SVM - JAFFE Database" )
jaffeTarget = readFromFile("SVM - JAFFE Targets.txt")
TrainSVM(jaffeDatabase, jaffeTarget)
SVM(jaffeDatabase, jaffeTarget)