We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
What is the input "w" in the CVaR loss function.
def CVaR(wealth = None, w = None, loss_param = None): alpha = loss_param # Expected shortfall risk measure return K.mean(w + (K.maximum(-wealth-w,0)/(1.0-alpha)))
How do I have to initialize it in order to avoid the following error:
optimizer = Adam(learning_rate=lr) # Setup and compile the model model_simple = Deep_Hedging_Model(N=N, d=d+2, m=m, risk_free=risk_free, \ dt = dt, strategy_type="simple", epsilon = epsilon, \ use_batch_norm = use_batch_norm, kernel_initializer = kernel_initializer, \ activation_dense = activation_dense, activation_output = activation_output, \ final_period_cost = final_period_cost, delta_constraint = delta_constraint, \ share_stretegy_across_time = share_stretegy_across_time, \ cost_structure = cost_structure) loss = CVaR(model_simple.output,None,loss_param) model_simple.add_loss(loss) model_simple.compile(optimizer=optimizer) early_stopping = EarlyStopping(monitor="loss", \ patience=10, min_delta=1e-4, restore_best_weights=True) reduce_lr = ReduceLROnPlateau(monitor="loss", \ factor=0.5, patience=2, min_delta=1e-3, verbose=0) callbacks = [early_stopping, reduce_lr] # Fit the model. model_simple.fit(x=xtrain, batch_size=batch_size, epochs=epochs, \ validation_split=0.1, verbose=1) #clear_output() print("Finished running deep hedging algorithm! (Simple Network)") --------------------------------------------------------------------------- ValueError Traceback (most recent call last) [<ipython-input-68-f4e901423d20>](https://localhost:8080/#) in <module>() 3 # Setup and compile the model 4 model_simple = Deep_Hedging_Model(N=N, d=d+2, m=m, risk_free=risk_free, dt = dt, strategy_type="simple", epsilon = epsilon, use_batch_norm = use_batch_norm, kernel_initializer = kernel_initializer, activation_dense = activation_dense, activation_output = activation_output, final_period_cost = final_period_cost, delta_constraint = delta_constraint, share_stretegy_across_time = share_stretegy_across_time, cost_structure = cost_structure) ----> 5 loss = CVaR(model_simple.output,None,loss_param) 6 model_simple.add_loss(loss) 7 3 frames [/usr/local/lib/python3.7/dist-packages/keras/utils/traceback_utils.py](https://localhost:8080/#) in error_handler(*args, **kwargs) 65 except Exception as e: # pylint: disable=broad-except 66 filtered_tb = _process_traceback_frames(e.__traceback__) ---> 67 raise e.with_traceback(filtered_tb) from None 68 finally: 69 del filtered_tb ValueError: Exception encountered when calling layer "tf.math.subtract_2" (type TFOpLambda). Tried to convert 'y' to a tensor and failed. Error: None values not supported. Call arguments received: • x=tf.Tensor(shape=(None, 1), dtype=float32) • y=None • nam 3 frames [/usr/local/lib/python3.7/dist-packages/keras/utils/traceback_utils.py](https://localhost:8080/#) in error_handler(*args, **kwargs) 65 except Exception as e: # pylint: disable=broad-except 66 filtered_tb = _process_traceback_frames(e.__traceback__) ---> 67 raise e.with_traceback(filtered_tb) from None 68 finally: 69 del filtered_tb ValueError: Exception encountered when calling layer "tf.math.subtract_2" (type TFOpLambda). Tried to convert 'y' to a tensor and failed. Error: None values not supported. Call arguments received: • x=tf.Tensor(shape=(None, 1), dtype=float32) • y=None • name=None ```e=None
The text was updated successfully, but these errors were encountered:
No branches or pull requests
What is the input "w" in the CVaR loss function.
How do I have to initialize it in order to avoid the following error:
The text was updated successfully, but these errors were encountered: