-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
176 lines (151 loc) · 6.61 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import logging
import os
from functools import partial
from setproctitle import setproctitle
from transformers import (
AutoConfig,
AutoImageProcessor,
AutoTokenizer,
HfArgumentParser,
Seq2SeqTrainer,
TrOCRProcessor,
VisionEncoderDecoderConfig,
VisionEncoderDecoderModel,
)
from transformers.trainer_utils import is_main_process
from arguments import DatasetsArguments, ModelArguments, MyTrainingArguments
from utils import DataCollatorForGptOCR, DataCollatorForOCR
from utils.augmentation import Augmentator
from utils.dataset_utils import get_dataset
from utils.training_utils import (
add_label_tokens,
compute_metrics,
has_unk_token,
seed_everything,
)
os.environ["TRANSFORMERS_NO_ADVISORY_WARNINGS"] = "1"
os.environ["TOKENIZERS_PARALLELISM"] = "false" # true면 데드락 -> 살펴보기????
# os.environ["WANDB_DISABLED"] = "true"
NUM_GPU = len(os.environ["CUDA_VISIBLE_DEVICES"].split(","))
logger = logging.getLogger(__name__)
def main(model_args: ModelArguments, dataset_args: DatasetsArguments, training_args: MyTrainingArguments):
setproctitle("kyowon")
seed_everything(training_args.seed)
vision_model_name = model_args.encoder_model_name_or_path
text_model_name = model_args.decoder_model_name_or_path
# 데이터 로드
is_sub_char = False
if text_model_name == "snunlp/KR-BERT-char16424":
is_sub_char = True
image_processor = AutoImageProcessor.from_pretrained(vision_model_name)
augmentator = Augmentator(
aug_with_compose_prob=0.8, rotation_prob=0.5, rotation_square_side=min(image_processor.size.values())
) # min? max?
train_dataset = get_dataset(dataset_args.train_csv_path, is_sub_char=is_sub_char)
train_dataset.set_transform(augmentator.augmentation)
valid_dataset = get_dataset(dataset_args.valid_csv_path, is_sub_char=is_sub_char)
# 모델, 컨피그 ,프로세서 로드
if "gpt" in text_model_name:
# print("in")
tokenizer = AutoTokenizer.from_pretrained(
text_model_name,
bos_token="<s>",
eos_token="</s>",
unk_token="<unk>",
pad_token="<pad>",
mask_token="<mask>",
)
else:
tokenizer = AutoTokenizer.from_pretrained(text_model_name)
# label에 unk 토큰이 있으면 vocab에 추가시켜줌
has_unk = has_unk_token(
tokenizer=tokenizer,
train_csv_path=dataset_args.train_csv_path,
valid_csv_path=dataset_args.valid_csv_path,
is_sub_char=is_sub_char,
)
if has_unk:
# 이 부분은 추가 검증 필요->lm head를 바꾸면 가중치가 의미가 없어지기 때문
logger.info(f"tokenized labels has unk token\nadd new tokens")
logger.info(f"before len(tokenizer): {len(tokenizer)}")
# add_label_tokens(
# tokenizer=tokenizer,
# train_csv_path=dataset_args.train_csv_path,
# valid_csv_path=dataset_args.valid_csv_path,
# is_sub_char=is_sub_char,
# )
logger.info(f"after len(tokenizer): {len(tokenizer)}")
vision_config = AutoConfig.from_pretrained(vision_model_name)
text_config = AutoConfig.from_pretrained(text_model_name)
config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(
encoder_config=vision_config, decoder_config=text_config
)
ocr_processor = TrOCRProcessor(image_processor=image_processor, tokenizer=tokenizer)
# config 설정
config.decoder.vocab_size = len(tokenizer)
config.decoder_start_token_id = (
tokenizer.cls_token_id if tokenizer.cls_token_id is not None else tokenizer.bos_token_id
)
config.pad_token_id = ocr_processor.tokenizer.pad_token_id
config.vocab_size = config.decoder.vocab_size
# set beam search parameters
config.eos_token_id = tokenizer.sep_token_id if tokenizer.sep_token_id is not None else tokenizer.eos_token_id
config.max_length = 32 # arg로 받을 수 있게 수정 "snunlp/KR-BERT-char16424"의 경우 최대 길이가 16, 넉넉히 32를 주면 될듯?
# config.early_stopping = True
# config.no_repeat_ngram_size = 3
# config.length_penalty = 2.0
config.num_beams = 10
# encoder_add_pooling_layer=False
# https://github.com/huggingface/transformers/issues/7924 ddp 관련
model = VisionEncoderDecoderModel.from_encoder_decoder_pretrained(
encoder_pretrained_model_name_or_path=vision_model_name,
decoder_pretrained_model_name_or_path=text_model_name,
encoder_add_pooling_layer=False,
decoder_vocab_size=config.vocab_size,
decoder_ignore_mismatched_sizes=True,
)
model.config = config
# 데이터 콜레이터 로드
if "gpt" in text_model_name:
data_collator = DataCollatorForGptOCR(processor=ocr_processor)
else:
data_collator = DataCollatorForOCR(processor=ocr_processor)
# 로깅 스텝 설정 -> 한 에폭에 5번
# 세이브 스텝 -> 한 에폭에 2번
total_batch = training_args.train_batch_size * training_args.gradient_accumulation_steps * NUM_GPU
one_epoch_len = len(train_dataset) // total_batch
total_steps = training_args.num_train_epochs * one_epoch_len
training_args.eval_steps = total_steps // 10
training_args.save_steps = total_steps // 10
training_args.logging_steps = one_epoch_len // 10
if training_args.local_rank == 0:
import wandb
wandb.init(
project=training_args.wandb_project,
entity=training_args.wandb_entity,
name=training_args.wandb_name,
)
# compute_metrics에 processor 할당
compute_metrics_with_processor = partial(compute_metrics, processor=ocr_processor)
trainer = Seq2SeqTrainer(
model=model,
data_collator=data_collator,
compute_metrics=compute_metrics_with_processor,
train_dataset=train_dataset,
eval_dataset=valid_dataset,
args=training_args,
)
trainer.train()
if training_args.local_rank == 0:
model.save_pretrained(training_args.output_dir)
config.save_pretrained(training_args.output_dir)
ocr_processor.save_pretrained(training_args.output_dir)
if __name__ == "__main__":
parser = HfArgumentParser((ModelArguments, DatasetsArguments, MyTrainingArguments))
model_args, dataset_args, training_args = parser.parse_args_into_dataclasses()
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if is_main_process(training_args.local_rank) else logging.WARN,
)
main(model_args=model_args, dataset_args=dataset_args, training_args=training_args)