-
Notifications
You must be signed in to change notification settings - Fork 81
/
Copy pathmain.py
284 lines (228 loc) · 10.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
'''Train CIFAR100 with PyTorch.'''
from __future__ import print_function
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
from torch.optim import lr_scheduler
import os
import argparse
from torchvision import datasets, models
from models import *
#from utils import progress_bar
import numpy as np
import sys
sys.path.append('../')
#import optimizers with GC
from algorithm.SGD import SGD
from algorithm.Adam import Adam,AdamW
from algorithm.RAdam import RAdam
from algorithm.Lookahead import Lookahead
from algorithm.Ranger import Ranger
#from algorithm.Adam import Adam_GCC,AdamW,AdamW_GCC
#from algorithm.Adagrad import Adagrad_GCC
parser = argparse.ArgumentParser(description='PyTorch CIFAR100 Training')
parser.add_argument('--lr', default=0.1, type=float, help='learning rate')
parser.add_argument('--resume', '-r', action='store_true', help='resume from checkpoint')
parser.add_argument('--bs', default=128, type=int, help='batchsize')
parser.add_argument('--wd', default=0.0005, type=float, help='weight decay')
parser.add_argument('--alg', default='sgd', type=str, help='algorithm')
parser.add_argument('--epochs', default=200, type=int, help='epochs')
parser.add_argument('--path', default='logout/result', type=str, help='path')
parser.add_argument('--model', default='r50', type=str, help='model')
parser.add_argument('--gpug', default=1, type=int, help='gpugroup')
args = parser.parse_args()
#os.environ["CUDA_VISIBLE_DEVICES"]="0"
if args.gpug==11:
os.environ["CUDA_VISIBLE_DEVICES"]="1"
if args.gpug==12:
os.environ["CUDA_VISIBLE_DEVICES"]="2"
if args.gpug==13:
os.environ["CUDA_VISIBLE_DEVICES"]="3"
if args.gpug==14:
os.environ["CUDA_VISIBLE_DEVICES"]="4"
if args.gpug==15:
os.environ["CUDA_VISIBLE_DEVICES"]="5"
if args.gpug==16:
os.environ["CUDA_VISIBLE_DEVICES"]="6"
if args.gpug==17:
os.environ["CUDA_VISIBLE_DEVICES"]="7"
if args.gpug==10:
os.environ["CUDA_VISIBLE_DEVICES"]="0"
epochs=args.epochs
device = 'cuda' if torch.cuda.is_available() else 'cpu'
best_acc = 0 # best test accuracy
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
# Data
print('==> Preparing data..')
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.507, 0.487, 0.441), (0.267, 0.256, 0.276)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.507, 0.487, 0.441), (0.267, 0.256, 0.276)),
])
trainset = torchvision.datasets.CIFAR100(root='/home/yonghw/data/cifar100/', train=True, download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=args.bs, shuffle=True, num_workers=4,drop_last=True)
testset = torchvision.datasets.CIFAR100(root='/home/yonghw/data/cifar100/', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=128, shuffle=False, num_workers=4)
# Model
print('==> Building model..')
Num_classes = 100
if args.model=='r18':
net = ResNet18(Num_classes=Num_classes)
if args.model=='r34':
net = ResNet34(Num_classes=Num_classes)
if args.model=='r50':
net = ResNet50(Num_classes=Num_classes)
if args.model=='r101':
net = ResNet101(Num_classes=Num_classes)
if args.model=='v11':
net = VGG('VGG11',Num_classes=Num_classes)
if args.model=='rx29':
net = ResNeXt29_4x64d(Num_classes=Num_classes)
if args.model=='d121':
net = DenseNet121(Num_classes=Num_classes)
if device == 'cuda':
net = net.cuda()
net = torch.nn.DataParallel(net)
cudnn.benchmark = True
if args.resume:
# Load checkpoint.
print('==> Resuming from checkpoint..')
assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!'
checkpoint = torch.load('./checkpoint/ckpt.t7')
net.load_state_dict(checkpoint['net'])
best_acc = checkpoint['acc']
start_epoch = checkpoint['epoch']
criterion = nn.CrossEntropyLoss()
#optimizer
WD=args.wd
print('==> choose optimizer..')
if args.alg=='sgd':
optimizer = SGD(net.parameters(), lr=args.lr, momentum=0.9,weight_decay = WD,use_gc=False, gc_conv_only=False)
if args.alg=='sgdGC':
optimizer = SGD(net.parameters(), lr=args.lr, momentum=0.9,weight_decay = WD,use_gc=True, gc_conv_only=False)
if args.alg=='sgdGCC':
optimizer = SGD(net.parameters(), lr=args.lr, momentum=0.9,weight_decay = WD,use_gc=True, gc_conv_only=True)
if args.alg=='adam':
optimizer = Adam(net.parameters(), lr=args.lr*0.01, weight_decay = WD,use_gc=False, gc_conv_only=False)
if args.alg=='adamGC':
optimizer = Adam(net.parameters(), lr=args.lr*0.01, weight_decay = WD,use_gc=True, gc_conv_only=False)
if args.alg=='adamGCC':
optimizer = Adam(net.parameters(), lr=args.lr*0.01, weight_decay = WD,use_gc=True, gc_conv_only=True)
if args.alg=='adamW':
optimizer = AdamW(net.parameters(), lr=args.lr*0.01, weight_decay = WD,use_gc=False, gc_conv_only=False)
if args.alg=='adamWGC':
optimizer = AdamW(net.parameters(), lr=args.lr*0.01, weight_decay = WD,use_gc=True, gc_conv_only=False)
if args.alg=='adamWGCC':
optimizer = AdamW(net.parameters(), lr=args.lr*0.01, weight_decay = WD,use_gc=True, gc_conv_only=True)
if args.alg=='radam':
optimizer = RAdam(net.parameters(), lr=args.lr*0.01, weight_decay = WD,use_gc=False, gc_conv_only=False)
if args.alg=='radamGC':
optimizer = RAdam(net.parameters(), lr=args.lr*0.01, weight_decay = WD,use_gc=True, gc_conv_only=False)
if args.alg=='radamGCC':
optimizer = RAdam(net.parameters(), lr=args.lr*0.01, weight_decay = WD,use_gc=True, gc_conv_only=True)
if args.alg=='Lsgd':
base_opt = SGD(net.parameters(), lr=args.lr, momentum=0.9,weight_decay = WD,use_gc=False, gc_conv_only=False)
optimizer = Lookahead(base_opt, k=5, alpha=0.5)
if args.alg=='LsgdGC':
base_opt = SGD(net.parameters(), lr=args.lr, momentum=0.9,weight_decay = WD,use_gc=True, gc_conv_only=False)
optimizer = Lookahead(base_opt, k=5, alpha=0.5)
if args.alg=='LsgdGCC':
base_opt = SGD(net.parameters(), lr=args.lr, momentum=0.9,weight_decay = WD,use_gc=True, gc_conv_only=True)
optimizer = Lookahead(base_opt, k=5, alpha=0.5)
if args.alg=='Ladam':
base_opt = Adam(net.parameters(), lr=args.lr*0.01, weight_decay = WD,use_gc=False, gc_conv_only=False)
optimizer = Lookahead(base_opt, k=5, alpha=0.5)
if args.alg=='LadamGC':
base_opt = Adam(net.parameters(), lr=args.lr*0.01, weight_decay = WD,use_gc=True, gc_conv_only=False)
optimizer = Lookahead(base_opt, k=5, alpha=0.5)
if args.alg=='LadamGCC':
base_opt = Adam(net.parameters(), lr=args.lr*0.01, weight_decay = WD,use_gc=True, gc_conv_only=True)
optimizer = Lookahead(base_opt, k=5, alpha=0.5)
if args.alg=='Lradam':
base_opt = RAdam(net.parameters(), lr=args.lr*0.01, weight_decay = WD,use_gc=False, gc_conv_only=False)
optimizer = Lookahead(base_opt, k=5, alpha=0.5)
if args.alg=='LradamGC':
base_opt = RAdam(net.parameters(), lr=args.lr*0.01, weight_decay = WD,use_gc=True, gc_conv_only=False)
optimizer = Lookahead(base_opt, k=5, alpha=0.5)
if args.alg=='LradamGCC':
base_opt = RAdam(net.parameters(), lr=args.lr*0.01, weight_decay = WD,use_gc=True, gc_conv_only=True)
optimizer = Lookahead(base_opt, k=5, alpha=0.5)
if args.alg=='ranger':
optimizer = Ranger(net.parameters(), lr=args.lr*0.01, weight_decay = WD,use_gc=False, gc_conv_only=False)
if args.alg=='rangerGC':
optimizer = Ranger(net.parameters(), lr=args.lr*0.01, weight_decay = WD,use_gc=True, gc_conv_only=False)
if args.alg=='rangerGCC':
optimizer = Ranger(net.parameters(), lr=args.lr*0.01, weight_decay = WD,use_gc=True, gc_conv_only=True)
if args.epochs==200:
exp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=60, gamma=0.1)
if args.epochs==400:
exp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=120, gamma=0.1)
# Training
def train(epoch,net,optimizer):
print('\nEpoch: %d' % epoch)
net.train()
train_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(trainloader):
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
print('Training: Loss: {:.4f} | Acc: {:.4f}'.format(train_loss/(batch_idx+1),correct/total))
# progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
# % (train_loss/(batch_idx+1), 100.*correct/total, correct, total))
acc=100.*correct/total
return acc
# Testing
def test(epoch,net):
global best_acc
net.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(testloader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
#progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
#% (test_loss/(batch_idx+1), 100.*correct/total, correct, total))
print('Testing:Loss: {:.4f} | Acc: {:.4f}'.format(test_loss/(batch_idx+1),correct/total) )
# Save checkpoint.
acc = 100.*correct/total
if acc > best_acc:
print('Saving..')
state = {
'net': net.state_dict(),
'acc': acc,
'epoch': epoch,
}
if not os.path.isdir('checkpoint'):
os.mkdir('checkpoint')
torch.save(state, './checkpoint/ckpt.t7')
best_acc = acc
return acc
for epoch in range(start_epoch, start_epoch+epochs):
train_acc=train(epoch,net,optimizer)
exp_lr_scheduler.step()
val_acc=test(epoch,net)