-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprecompute.py
194 lines (161 loc) · 8.42 KB
/
precompute.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
from __future__ import print_function
import argparse
import torch
from torch.autograd import Variable
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
import os
import numpy as np
import models.densenet as dn
from tqdm import tqdm
import pickle
import time
parser = argparse.ArgumentParser(description='PyTorch')
parser.add_argument('--dataset', '-d', default='CIFAR-100', type=str, help='dataset')
parser.add_argument('--method', default='taylor', type=str, help='odin mahalanobis')
parser.add_argument('--model_arch', default='resnet50', type=str, help='model architecture')
args = parser.parse_args()
def precompute(args):
if args.dataset == 'CIFAR-100':
num_classes = 100
model = dn.DenseNet3(100, num_classes, normalizer=None, p_w=None, p_a=None, LU = True) # LUNCH
checkpoint = torch.load("./checkpoints/CIFAR-100/densenet/checkpoint_100.pth.tar")
model.load_state_dict(checkpoint['state_dict'])
featdim = 342
elif args.dataset == 'CIFAR-10':
num_classes = 10
model = dn.DenseNet3(100, num_classes, normalizer=None, p_w=None, p_a=None, LU = True) # LUNCH
checkpoint = torch.load("./checkpoints/CIFAR-10/densenet/checkpoint_100.pth.tar")
model.load_state_dict(checkpoint['state_dict'])
featdim = 342
elif args.dataset == 'imagenet':
num_classes = 1000
from models.resnet import resnet50
model = resnet50(num_classes=num_classes, pretrained=True,LU=True)
featdim = 2048
net = model
device = 'cuda' if torch.cuda.is_available() else 'cpu'
batch_size = 64
test_batch_size = 64
net = net.to(device)
if args.dataset in {'CIFAR-10', 'CIFAR-100'}:
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])
dataset = {
'CIFAR-10': torchvision.datasets.CIFAR10,
'CIFAR-100': torchvision.datasets.CIFAR100,
}
trainset = dataset[args.dataset](root='./data', train=True, download=True, transform=transform_test)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=test_batch_size, shuffle=False, num_workers=4)
id_train_size = 50000
cache_name = f"cache/{args.dataset}_train_densenet_{args.method}_in.npy"
if not os.path.exists(cache_name):
shap_log = np.zeros((id_train_size, featdim))
score_log = np.zeros((id_train_size, num_classes))
label_log = np.zeros(id_train_size)
batch_size = 1
net.eval()
trainloader = torch.utils.data.DataLoader(trainset, batch_size, shuffle=False, num_workers=4)
for batch_idx, (inputs, targets) in enumerate(tqdm(trainloader)):
inputs, targets = inputs.to(device), targets.to(device)
start_ind = batch_idx
if args.method in {'taylor'}:
first_order_taylor_scores, outputs = net._compute_taylor_scores(inputs, targets)
shap_log[start_ind, :] = first_order_taylor_scores[0].squeeze().cpu().detach().numpy()
label_log[start_ind] = targets.data.cpu().numpy()
score_log[start_ind] = outputs.data.cpu().numpy()
np.save(cache_name, (shap_log.T, score_log.T, label_log))
print("dataset : ", args.dataset)
print("method : ", args.method)
print("iteration done")
else:
shap_log, score_log, label_log = np.load(cache_name, allow_pickle=True)
shap_log, score_log = shap_log.T, score_log.T
shap_matrix_mean = np.zeros((featdim,num_classes))
for class_num in range(num_classes):
mask = np.array(label_log==class_num)
masked_shap = mask[:,np.newaxis] * shap_log
shap_matrix_mean[:,class_num] = masked_shap.sum(0) / mask.sum()
np.save(f"cache/{args.dataset}_densenet_{args.method}_mean_class.npy", shap_matrix_mean)
print("dataset : ", args.dataset)
print("method : ", args.method)
print("precompute done")
else:
transform_test_largescale = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
############################################################################################################
cache_name_shap = f"cache/{args.dataset}_{args.model_arch}_{args.method}.npy"
cache_name_score = f"cache/{args.dataset}_{args.model_arch}_{args.method}_score.npy"
cache_name_label = f"cache/{args.dataset}_{args.model_arch}_{args.method}_label.npy"
if not os.path.exists(cache_name_shap):
batch_size = 1
traindata = torchvision.datasets.ImageFolder('./datasets/ILSVRC-2012/train', transform_test_largescale)
trainloader = torch.utils.data.DataLoader(traindata, batch_size=batch_size, shuffle=True, pin_memory=True, num_workers=4)
id_train_size = len(traindata)
shap_log = np.zeros((id_train_size, featdim))
score_log = np.zeros((id_train_size, num_classes))
label_log = np.zeros(id_train_size)
net.eval()
for batch_idx, (inputs, targets) in enumerate(tqdm(trainloader)):
inputs, targets = inputs.to(device), targets.to(device)
start_ind = batch_idx
if args.method in {'taylor', 'taylor_abs'}:
first_order_taylor_scores, outputs = net._compute_taylor_scores(inputs, targets)
shap_log[start_ind, :] = first_order_taylor_scores[0].squeeze().cpu().detach().numpy()
label_log[start_ind] = targets.data.cpu().numpy()
score_log[start_ind] = outputs.data.cpu().numpy()
with open(cache_name_shap, 'wb') as f:
pickle.dump(shap_log.T, f, protocol=pickle.DEFAULT_PROTOCOL)
with open(cache_name_score, 'wb') as f:
pickle.dump(score_log.T, f, protocol=pickle.DEFAULT_PROTOCOL)
with open(cache_name_label, 'wb') as f:
pickle.dump(label_log.T, f, protocol=pickle.DEFAULT_PROTOCOL)
print("dataset : ", args.dataset, "method : ", args.method, "iteration done")
else:
cache_name_shap = f"cache/{args.dataset}_{args.model_arch}_{args.method}.npy"
cache_name_score = f"cache/{args.dataset}_{args.model_arch}_{args.method}_score.npy"
cache_name_label = f"cache/{args.dataset}_{args.model_arch}_{args.method}_label.npy"
with open(cache_name_shap, 'rb') as f:
shap_log = pickle.load(f)
with open(cache_name_score, 'rb') as f:
score_log = pickle.load(f)
with open(cache_name_label, 'rb') as f:
label_log = pickle.load(f)
shap_log, label_log = shap_log.T, label_log.T
shap_matrix_mean = np.zeros((featdim,num_classes))
for class_num in tqdm(range(num_classes)):
mask = np.where(label_log==class_num)
masked_shap = shap_log[mask[0][:]]
num_sample = len(mask[0][:])
shap_matrix_mean[:,class_num] = masked_shap.sum(0) / num_sample
np.save(f"cache/{args.dataset}_{args.model_arch}_{args.method}_mean_class.npy", shap_matrix_mean)
print("done")
if __name__ == '__main__':
########## CIFAR precompute ##########
args.model_arch = 'densenet'
for dataset in ['CIFAR-10', 'CIFAR-100']:
args.method = 'taylor'
args.dataset = dataset
precompute(args)
# precompute twice for class-wise info
for dataset in ['CIFAR-10', 'CIFAR-100']:
args.method = 'taylor'
args.dataset = dataset
precompute(args)
########## ImageNet precompute ##########
args.model_arch = 'resnet50'
args.method = 'taylor'
args.dataset = 'imagenet'
precompute(args)
# precompute twice for class-wise info
args.model_arch = 'resnet50'
args.method = 'taylor'
args.dataset = 'imagenet'
precompute(args)