-
Notifications
You must be signed in to change notification settings - Fork 0
/
SCNN.py
268 lines (236 loc) · 13.2 KB
/
SCNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import os
#import sys
import matplotlib.pyplot as plt
import torch
import torchvision
import torch.nn.functional as F
# import torch.nn as nn
import numpy as np
# import WPFolder
from PIL import Image
from mindspore import nn, ops
from mindspore.common.initializer import Normal,Constant
# def weight_init(net):
# for m in net.Cell():
# if isinstance(m, nn.Conv2d):
# nn.init.kaiming_normal_(m.weight.data,nonlinearity='relu')
# m.bias.data.zero_()
# elif isinstance(m, nn.Linear):
# nn.init.kaiming_normal_(m.weight.data,nonlinearity='relu')
# m.bias.data.zero_()
# elif isinstance(m, nn.BatchNorm2d):
# m.weight.data.fill_(1)
# m.bias.data.zero_()
class SCNN(nn.Cell):
def __init__(self):
"""Declare all needed layers."""
super(SCNN, self).__init__()
# Linear classifier.
self.num_class = 39
# self.features = nn.SequentialCell(nn.Conv2d(3,48,kernel_size=3,pad_mode='pad',stride=1,padding=1, weight_init=Normal(0.0, (2.0 / 3)**0.5)),nn.BatchNorm2d(48, gamma_init=Constant(1)),nn.ReLU( ),
# nn.Conv2d(48,48,kernel_size=3,pad_mode='pad',stride=2,padding=1, weight_init=Normal(0.0, (2.0 / 3)**0.5)),nn.BatchNorm2d(48, gamma_init=Constant(1)),nn.ReLU( ),
# nn.Conv2d(48,64,kernel_size=3,pad_mode='pad',stride=1,padding=1, weight_init=Normal(0.0, (2.0 / 3)**0.5)),nn.BatchNorm2d(64, gamma_init=Constant(1)),nn.ReLU( ),
# nn.Conv2d(64,64,kernel_size=3,pad_mode='pad',stride=2,padding=1, weight_init=Normal(0.0, (2.0 / 3)**0.5)),nn.BatchNorm2d(64, gamma_init=Constant(1)),nn.ReLU( ),
# nn.Conv2d(64,64,kernel_size=3,pad_mode='pad',stride=1,padding=1, weight_init=Normal(0.0, (2.0 / 3)**0.5)),nn.BatchNorm2d(64, gamma_init=Constant(1)),nn.ReLU( ),
# nn.Conv2d(64,64,kernel_size=3,pad_mode='pad',stride=2,padding=1, weight_init=Normal(0.0, (2.0 / 3)**0.5)),nn.BatchNorm2d(64, gamma_init=Constant(1)),nn.ReLU( ),
# nn.Conv2d(64,128,kernel_size=3,pad_mode='pad',stride=1,padding=1, weight_init=Normal(0.0, (2.0 / 3)**0.5)),nn.BatchNorm2d(128, gamma_init=Constant(1)),nn.ReLU( ),
# nn.Conv2d(128,128,kernel_size=3,pad_mode='pad',stride=1,padding=1, weight_init=Normal(0.0, (2.0 / 3)**0.5)),nn.BatchNorm2d(128, gamma_init=Constant(1)),nn.ReLU( ),
# nn.Conv2d(128,128,kernel_size=3,pad_mode='pad',stride=2,padding=1, weight_init=Normal(0.0, (2.0 / 3)**0.5)),nn.BatchNorm2d(128, gamma_init=Constant(1)),nn.ReLU( ))
self.features = nn.SequentialCell(nn.Conv2d(3,48,kernel_size=3,pad_mode='pad',stride=1,padding=1),nn.BatchNorm2d(48, gamma_init=Constant(1)),nn.ReLU( ),
nn.Conv2d(48,48,kernel_size=3,pad_mode='pad',stride=2,padding=1),nn.BatchNorm2d(48, gamma_init=Constant(1)),nn.ReLU( ),
nn.Conv2d(48,64,kernel_size=3,pad_mode='pad',stride=1,padding=1),nn.BatchNorm2d(64, gamma_init=Constant(1)),nn.ReLU( ),
nn.Conv2d(64,64,kernel_size=3,pad_mode='pad',stride=2,padding=1),nn.BatchNorm2d(64, gamma_init=Constant(1)),nn.ReLU( ),
nn.Conv2d(64,64,kernel_size=3,pad_mode='pad',stride=1,padding=1),nn.BatchNorm2d(64, gamma_init=Constant(1)),nn.ReLU( ),
nn.Conv2d(64,64,kernel_size=3,pad_mode='pad',stride=2,padding=1),nn.BatchNorm2d(64, gamma_init=Constant(1)),nn.ReLU( ),
nn.Conv2d(64,128,kernel_size=3,pad_mode='pad',stride=1,padding=1),nn.BatchNorm2d(128, gamma_init=Constant(1)),nn.ReLU( ),
nn.Conv2d(128,128,kernel_size=3,pad_mode='pad',stride=1,padding=1),nn.BatchNorm2d(128, gamma_init=Constant(1)),nn.ReLU( ),
nn.Conv2d(128,128,kernel_size=3,pad_mode='pad',stride=2,padding=1),nn.BatchNorm2d(128, gamma_init=Constant(1)),nn.ReLU( ))
self.pooling = nn.AvgPool2d(14,1)
self.projection = nn.SequentialCell(nn.Conv2d(128,256,kernel_size=1,stride=1,padding=0, weight_init=Normal(0.0, (2.0 / 3)**0.5)), nn.BatchNorm2d(256, gamma_init=Constant(1)), nn.ReLU( ),
nn.Conv2d(256,256,kernel_size=1,stride=1,padding=0, weight_init=Normal(0.0, (2.0 / 3)**0.5)), nn.BatchNorm2d(256, gamma_init=Constant(1)), nn.ReLU( ))
# weight_init(self.projection)
self.classifier = nn.Dense(256,self.num_class, weight_init=Normal(0.0, (2.0 / 3)**0.5))
# weight_init(self.classifier)
def construct(self, X):
# return X
N = X.shape[0]
# assert X.shape == (N, 3, 224, 224)
X = self.features(X)
# assert X.shape == (N, 128, 14, 14)
# X = self.pooling(X)
# # assert X.shape == (N, 128, 1, 1)
# X = self.projection(X)
# X = X.view(X.shape[0], -1)
# X = self.classifier(X)
# assert X.shape == (N, self.num_class)
return X
# class SCNNManager(object):
# """Manager class to train S-CNN.
# """
# def __init__(self, options, path):
# """Prepare the network, criterion, solver, and data.
# Args:
# options, dict: Hyperparameters.
# """
# print('Prepare the network and data.')
# self._options = options
# self._path = path
# self._epoch = 0
# # Network.
# network = SCNN()
# weight_init(network)
# #self._net = network.cuda()
# self._net = torch.nn.DataParallel(network).cuda()
# logspaced_LR = np.logspace(-1,-4, self._options['epochs'])
# # Load the model from disk.
# checkpoints_list = os.listdir(self._path['model'])
# if len(checkpoints_list) != 0:
# self._net.load_state_dict(torch.load(os.path.join(self._path['model'],'%s%s%s' % ('net_params', str(len(checkpoints_list)-1), '.pkl'))))
# self._epoch = len(checkpoints_list)
# self._options['base_lr'] = logspaced_LR[len(checkpoints_list)]
# #self._net.load_state_dict(torch.load(self._path['model']))
# print(self._net)
# # Criterion.
# self._criterion = torch.nn.CrossEntropyLoss().cuda()
# # Solver.
# self._solver = torch.optim.SGD(
# self._net.parameters(), lr=self._options['base_lr'],
# momentum=0.9, weight_decay=self._options['weight_decay'])
# # self._solver = torch.optim.Adam(
# # self._net.parameters(), lr=self._options['base_lr'],
# # weight_decay=self._options['weight_decay'])
# lambda1 = lambda epoch: logspaced_LR[epoch]
# self._scheduler = torch.optim.lr_scheduler.LambdaLR(self._solver,lr_lambda=lambda1)
# train_transforms = torchvision.transforms.Compose([
# torchvision.transforms.Resize(size=256), # Let smaller edge match
# torchvision.transforms.RandomHorizontalFlip(),
# torchvision.transforms.RandomCrop(size=224),
# torchvision.transforms.ToTensor(),
# torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406),
# std=(0.229, 0.224, 0.225))
# ])
# test_transforms = torchvision.transforms.Compose([
# torchvision.transforms.Resize(size=256),
# torchvision.transforms.CenterCrop(size=224),
# torchvision.transforms.ToTensor(),
# torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406),
# std=(0.229, 0.224, 0.225))
# ])
# train_data = WPFolder.WPFolder(
# root=self._path['waterloo_pascal'], loader = default_loader, extensions = IMG_EXTENSIONS,
# transform=train_transforms,train = True, ratio = 0.8)
# test_data = WPFolder.WPFolder(
# root=self._path['waterloo_pascal'], loader = default_loader, extensions = IMG_EXTENSIONS,
# transform=test_transforms, train = False, ratio = 0.8)
# self._train_loader = torch.utils.data.DataLoader(
# train_data, batch_size=self._options['batch_size'],
# shuffle=True, num_workers=0, pin_memory=True)
# self._test_loader = torch.utils.data.DataLoader(
# test_data, batch_size=self._options['batch_size'],
# shuffle=False, num_workers=0, pin_memory=True)
# def train(self):
# """Train the network."""
# print('Training.')
# best_acc = 0.0
# best_epoch = None
# print('Epoch\tTrain loss\tTrain acc\tTest acc')
# for t in range(self._epoch,self._options['epochs']):
# epoch_loss = []
# num_correct = 0.0
# num_total = 0.0
# batchindex = 0
# for X, y in self._train_loader:
# X = torch.tensor(X.cuda())
# y = torch.tensor(y.cuda())
# #y = torch.tensor(y.to(device))
# # Clear the existing gradients.
# self._solver.zero_grad()
# # Forward pass.
# score = self._net(X)
# loss = self._criterion(score, y.detach())
# epoch_loss.append(loss.item())
# # Prediction.
# _, prediction = torch.max(F.softmax(score.data), 1)
# num_total += y.size(0)
# num_correct += torch.sum(prediction == y)
# # Backward pass.
# loss.backward()
# self._solver.step()
# batchindex = batchindex + 1
# print('%d epoch done' % (t+1))
# train_acc = 100 * num_correct.float() / num_total
# if (t < 2) | (t > 20):
# with torch.no_grad():
# test_acc = self._accuracy(self._test_loader)
# if test_acc > best_acc:
# best_acc = test_acc
# best_epoch = t + 1
# print('*', end='')
# print('%d\t%4.3f\t\t%4.2f%%\t\t%4.2f%%' %
# (t+1, sum(epoch_loss) / len(epoch_loss), train_acc, test_acc))
# pwd = os.getcwd()
# modelpath = os.path.join(pwd,'models',('net_params' + str(t) + '.pkl'))
# torch.save(self._net.state_dict(), modelpath)
# self._scheduler.step(t)
# print('Best at epoch %d, test accuaray %f' % (best_epoch, best_acc))
# def _accuracy(self, data_loader):
# """Compute the train/test accuracy.
# Args:
# data_loader: Train/Test DataLoader.
# Returns:
# Train/Test accuracy in percentage.
# """
# self._net.eval()
# num_correct = 0.0
# num_total = 0.0
# batchindex = 0
# for X, y in data_loader:
# # Data.
# batchindex = batchindex + 1
# X = torch.tensor(X.cuda())
# y = torch.tensor(y.cuda())
# #y = torch.tensor(y.to(device))
# # Prediction.
# score = self._net(X)
# _, prediction = torch.max(score.data, 1)
# num_total += y.size(0)
# num_correct += torch.sum(prediction == y.data)
# self._net.train() # Set the model to training phase
# return 100 * num_correct.float() / num_total
# def main():
# """The main function."""
# import argparse
# parser = argparse.ArgumentParser(
# description='Train DB-CNN for BIQA.')
# parser.add_argument('--base_lr', dest='base_lr', type=float, default=1e-1,
# help='Base learning rate for training.')
# parser.add_argument('--batch_size', dest='batch_size', type=int,
# default=128, help='Batch size.')
# parser.add_argument('--epochs', dest='epochs', type=int,
# default=30, help='Epochs for training.')
# parser.add_argument('--weight_decay', dest='weight_decay', type=float,
# default=5e-4, help='Weight decay.')
# args = parser.parse_args()
# if args.base_lr <= 0:
# raise AttributeError('--base_lr parameter must >0.')
# if args.batch_size <= 0:
# raise AttributeError('--batch_size parameter must >0.')
# if args.epochs < 0:
# raise AttributeError('--epochs parameter must >=0.')
# if args.weight_decay <= 0:
# raise AttributeError('--weight_decay parameter must >0.')
# options = {
# 'base_lr': args.base_lr,
# 'batch_size': args.batch_size,
# 'epochs': args.epochs,
# 'weight_decay': args.weight_decay,
# }
# path = {
# 'waterloo_pascal': 'Z:\Waterloo\exploration_database_and_code\image',
# 'model': 'D:\zwx_Project\dbcnn_pytorch\models'
# }
# manager = SCNNManager(options, path)
# # manager.getStat()
# manager.train()
# if __name__ == '__main__':
# main()