-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathLIVEFloder.py
129 lines (101 loc) · 3.77 KB
/
LIVEFloder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import torch.utils.data as data
from PIL import Image
import h5py
import os
import os.path
import scipy.io
import numpy as np
import random
import csv
def getFileName(path, suffix):
filename = []
f_list = os.listdir(path)
# print f_list
for i in f_list:
if os.path.splitext(i)[1] == suffix:
filename.append(i)
return filename
def getDistortionTypeFileName(path, num):
filename = []
index = 1
for i in range(0,num):
name = '%s%s%s' % ('img',str(index),'.bmp')
filename.append(os.path.join(path,name))
index = index + 1
return filename
class LIVEFolder(data.Dataset):
def __init__(self, root, loader, index, transform=None, target_transform=None):
self.root = root
self.loader = loader
self.refpath = os.path.join(self.root, 'refimgs')
self.refname = getFileName( self.refpath,'.bmp')
self.imgname=[]
self.labels = []
self.csv_file = os.path.join(self.root, 'LIVEhist_new.txt')
with open(self.csv_file) as f:
reader = f.readlines()
for i, line in enumerate(reader):
token = line.split("\t")
token[0]=eval(token[0])
self.imgname.append(token[0])
values = np.array(token[1:11], dtype='float32')
values /= values.sum()
self.labels.append(values)
refnames_all = scipy.io.loadmat(os.path.join(self.root, 'refnames_all.mat'))
self.refnames_all = refnames_all['refnames_all']
self.orgs_files = scipy.io.loadmat(os.path.join(self.root, 'orgs.mat'))
self.orgs =self.orgs_files['orgs']
sample = []
for i in range(0, len(index)):
train_sel = (self.refname[index[i]] == self.refnames_all)
train_sel = train_sel * ~self.orgs.astype(np.bool_)
train_sel1 = np.where(train_sel == True)
train_sel = train_sel1[1].tolist()
for j, item in enumerate(train_sel):
sample.append((os.path.join(self.root,'allimg', self.imgname[item]), self.labels[item]))
self.samples = sample
self.transform = transform
self.target_transform = target_transform
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (sample, target) where target is class_index of the target class.
"""
path, target = self.samples[index]
sample = self.loader(path)
if self.transform is not None:
sample = self.transform(sample)
if self.target_transform is not None:
target = self.target_transform(target)
return sample, target
def __len__(self):
length = len(self.samples)
return length
def pil_loader(path):
# open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
with open(path, 'rb') as f:
img = Image.open(f)
return img.convert('RGB')
def accimage_loader(path):
import accimage
try:
return accimage.Image(path)
except IOError:
# Potentially a decoding problem, fall back to PIL.Image
return pil_loader(path)
def default_loader(path):
from torchvision import get_image_backend
if get_image_backend() == 'accimage':
return accimage_loader(path)
else:
return pil_loader(path)
if __name__ == '__main__':
liveroot = '/home/gyx/DATA/imagehist/LIVE'
index = list(range(0,29))
random.shuffle(index)
train_index = index[0:round(0.8*29)]
test_index = index[round(0.8*29):29]
trainset = LIVEFolder(root = liveroot, loader = default_loader, index = train_index)
testset = LIVEFolder(root = liveroot, loader = default_loader, index = test_index)