-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathcallback_util.py
90 lines (79 loc) · 3.59 KB
/
callback_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import numpy as np
import keras.backend as K
from keras.callbacks import Callback, LearningRateScheduler
class LoggerCallback(Callback):
"""
Log train/val loss and acc into file for later plots.
"""
def __init__(self, model, X_train, y_train, y_train_clean, X_test, y_test, dataset,
model_name, noise_ratio, asym, epochs, alpha, beta):
super(LoggerCallback, self).__init__()
self.model = model
self.X_train = X_train
self.y_train = y_train
self.y_train_clean = y_train_clean
self.X_test = X_test
self.y_test = y_test
self.n_class = y_train.shape[1]
self.dataset = dataset
self.model_name = model_name
self.noise_ratio = noise_ratio
self.asym = asym
self.epochs = epochs
self.alpha = alpha
self.beta = beta
self.train_loss = []
self.test_loss = []
self.train_acc = []
self.test_acc = []
self.train_loss_class = [None]*self.n_class
self.train_acc_class = [None]*self.n_class
# the followings are used to estimate LID
self.lid_k = 20
self.lid_subset = 128
self.lids = []
# complexity - Critical Sample Ratio (csr)
self.csr_subset = 500
self.csr_batchsize = 100
self.csrs = []
def on_epoch_end(self, epoch, logs={}):
tr_acc = logs.get('acc')
tr_loss = logs.get('loss')
val_loss = logs.get('val_loss')
val_acc = logs.get('val_acc')
self.train_loss.append(tr_loss)
self.test_loss.append(val_loss)
self.train_acc.append(tr_acc)
self.test_acc.append(val_acc)
print('ALL acc:', self.test_acc)
if self.asym:
file_name = 'log/asym_loss_%s_%s_%s.npy' % \
(self.model_name, self.dataset, self.noise_ratio)
np.save(file_name, np.stack((np.array(self.train_loss), np.array(self.test_loss))))
file_name = 'log/asym_acc_%s_%s_%s.npy' % \
(self.model_name, self.dataset, self.noise_ratio)
np.save(file_name, np.stack((np.array(self.train_acc), np.array(self.test_acc))))
file_name = 'log/asym_class_loss_%s_%s_%s.npy' % \
(self.model_name, self.dataset, self.noise_ratio)
np.save(file_name, np.array(self.train_loss_class))
file_name = 'log/asym_class_acc_%s_%s_%s.npy' % \
(self.model_name, self.dataset, self.noise_ratio)
np.save(file_name, np.array(self.train_acc_class))
else:
file_name = 'log/loss_%s_%s_%s_%s.npy' % \
(self.model_name, self.dataset, self.noise_ratio, self.alpha)
np.save(file_name, np.stack((np.array(self.train_loss), np.array(self.test_loss))))
file_name = 'log/acc_%s_%s_%s_%s.npy' % \
(self.model_name, self.dataset, self.noise_ratio, self.alpha)
np.save(file_name, np.stack((np.array(self.train_acc), np.array(self.test_acc))))
return
class SGDLearningRateTracker(Callback):
def __init__(self, model):
super(SGDLearningRateTracker, self).__init__()
self.model = model
def on_epoch_begin(self, epoch, logs={}):
init_lr = float(K.get_value(self.model.optimizer.lr))
decay = float(K.get_value(self.model.optimizer.decay))
iterations = float(K.get_value(self.model.optimizer.iterations))
lr = init_lr * (1. / (1. + decay * iterations))
print('init lr: %.4f, current lr: %.4f, decay: %.4f, iterations: %s' % (init_lr, lr, decay, iterations))