forked from laser-institute/laser-orientation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathorientation-code-along-slides-python.html
1207 lines (1102 loc) · 69.8 KB
/
orientation-code-along-slides-python.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html lang="en"><head>
<script src="orientation-code-along-slides-python_files/libs/clipboard/clipboard.min.js"></script>
<script src="orientation-code-along-slides-python_files/libs/quarto-html/tabby.min.js"></script>
<script src="orientation-code-along-slides-python_files/libs/quarto-html/popper.min.js"></script>
<script src="orientation-code-along-slides-python_files/libs/quarto-html/tippy.umd.min.js"></script>
<link href="orientation-code-along-slides-python_files/libs/quarto-html/tippy.css" rel="stylesheet">
<link href="orientation-code-along-slides-python_files/libs/quarto-html/light-border.css" rel="stylesheet">
<link href="orientation-code-along-slides-python_files/libs/quarto-html/quarto-html.min.css" rel="stylesheet" data-mode="light">
<link href="orientation-code-along-slides-python_files/libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles"><meta charset="utf-8">
<meta name="generator" content="quarto-1.4.550">
<title>Workflow & Reproducible Research</title>
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="black-translucent">
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no, minimal-ui">
<link rel="stylesheet" href="orientation-code-along-slides-python_files/libs/revealjs/dist/reset.css">
<link rel="stylesheet" href="orientation-code-along-slides-python_files/libs/revealjs/dist/reveal.css">
<style>
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
div.columns{display: flex; gap: min(4vw, 1.5em);}
div.column{flex: auto; overflow-x: auto;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
ul.task-list li input[type="checkbox"] {
width: 0.8em;
margin: 0 0.8em 0.2em -1em; /* quarto-specific, see https://github.com/quarto-dev/quarto-cli/issues/4556 */
vertical-align: middle;
}
/* CSS for syntax highlighting */
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #767676;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #767676; padding-left: 4px; }
div.sourceCode
{ color: #545454; background-color: #fefefe; }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span { color: #545454; } /* Normal */
code span.al { color: #7928a1; } /* Alert */
code span.an { color: #696969; } /* Annotation */
code span.at { color: #a55a00; } /* Attribute */
code span.bn { color: #7928a1; } /* BaseN */
code span.bu { } /* BuiltIn */
code span.cf { color: #d91e18; } /* ControlFlow */
code span.ch { color: #008000; } /* Char */
code span.cn { color: #d91e18; } /* Constant */
code span.co { color: #696969; } /* Comment */
code span.cv { color: #696969; font-style: italic; } /* CommentVar */
code span.do { color: #696969; font-style: italic; } /* Documentation */
code span.dt { color: #7928a1; } /* DataType */
code span.dv { color: #7928a1; } /* DecVal */
code span.er { color: #7928a1; } /* Error */
code span.ex { } /* Extension */
code span.fl { color: #a55a00; } /* Float */
code span.fu { color: #06287e; } /* Function */
code span.im { } /* Import */
code span.in { color: #696969; } /* Information */
code span.kw { color: #d91e18; } /* Keyword */
code span.op { color: #00769e; } /* Operator */
code span.ot { color: #d91e18; } /* Other */
code span.pp { color: #7928a1; } /* Preprocessor */
code span.sc { color: #00769e; } /* SpecialChar */
code span.ss { color: #008000; } /* SpecialString */
code span.st { color: #008000; } /* String */
code span.va { color: #a55a00; } /* Variable */
code span.vs { color: #008000; } /* VerbatimString */
code span.wa { color: #696969; font-style: italic; } /* Warning */
</style>
<link rel="stylesheet" href="orientation-code-along-slides-python_files/libs/revealjs/dist/theme/quarto.css">
<link href="orientation-code-along-slides-python_files/libs/revealjs/plugin/quarto-line-highlight/line-highlight.css" rel="stylesheet">
<link href="orientation-code-along-slides-python_files/libs/revealjs/plugin/reveal-menu/menu.css" rel="stylesheet">
<link href="orientation-code-along-slides-python_files/libs/revealjs/plugin/reveal-menu/quarto-menu.css" rel="stylesheet">
<link href="orientation-code-along-slides-python_files/libs/revealjs/plugin/reveal-chalkboard/font-awesome/css/all.css" rel="stylesheet">
<link href="orientation-code-along-slides-python_files/libs/revealjs/plugin/reveal-chalkboard/style.css" rel="stylesheet">
<link href="orientation-code-along-slides-python_files/libs/revealjs/plugin/quarto-support/footer.css" rel="stylesheet">
<style type="text/css">
.callout {
margin-top: 1em;
margin-bottom: 1em;
border-radius: .25rem;
}
.callout.callout-style-simple {
padding: 0em 0.5em;
border-left: solid #acacac .3rem;
border-right: solid 1px silver;
border-top: solid 1px silver;
border-bottom: solid 1px silver;
display: flex;
}
.callout.callout-style-default {
border-left: solid #acacac .3rem;
border-right: solid 1px silver;
border-top: solid 1px silver;
border-bottom: solid 1px silver;
}
.callout .callout-body-container {
flex-grow: 1;
}
.callout.callout-style-simple .callout-body {
font-size: 1rem;
font-weight: 400;
}
.callout.callout-style-default .callout-body {
font-size: 0.9rem;
font-weight: 400;
}
.callout.callout-titled.callout-style-simple .callout-body {
margin-top: 0.2em;
}
.callout:not(.callout-titled) .callout-body {
display: flex;
}
.callout:not(.no-icon).callout-titled.callout-style-simple .callout-content {
padding-left: 1.6em;
}
.callout.callout-titled .callout-header {
padding-top: 0.2em;
margin-bottom: -0.2em;
}
.callout.callout-titled .callout-title p {
margin-top: 0.5em;
margin-bottom: 0.5em;
}
.callout.callout-titled.callout-style-simple .callout-content p {
margin-top: 0;
}
.callout.callout-titled.callout-style-default .callout-content p {
margin-top: 0.7em;
}
.callout.callout-style-simple div.callout-title {
border-bottom: none;
font-size: .9rem;
font-weight: 600;
opacity: 75%;
}
.callout.callout-style-default div.callout-title {
border-bottom: none;
font-weight: 600;
opacity: 85%;
font-size: 0.9rem;
padding-left: 0.5em;
padding-right: 0.5em;
}
.callout.callout-style-default div.callout-content {
padding-left: 0.5em;
padding-right: 0.5em;
}
.callout.callout-style-simple .callout-icon::before {
height: 1rem;
width: 1rem;
display: inline-block;
content: "";
background-repeat: no-repeat;
background-size: 1rem 1rem;
}
.callout.callout-style-default .callout-icon::before {
height: 0.9rem;
width: 0.9rem;
display: inline-block;
content: "";
background-repeat: no-repeat;
background-size: 0.9rem 0.9rem;
}
.callout-title {
display: flex
}
.callout-icon::before {
margin-top: 1rem;
padding-right: .5rem;
}
.callout.no-icon::before {
display: none !important;
}
.callout.callout-titled .callout-body > .callout-content > :last-child {
padding-bottom: 0.5rem;
margin-bottom: 0;
}
.callout.callout-titled .callout-icon::before {
margin-top: .5rem;
padding-right: .5rem;
}
.callout:not(.callout-titled) .callout-icon::before {
margin-top: 1rem;
padding-right: .5rem;
}
/* Callout Types */
div.callout-note {
border-left-color: #4582ec !important;
}
div.callout-note .callout-icon::before {
background-image: url('');
}
div.callout-note.callout-style-default .callout-title {
background-color: #dae6fb
}
div.callout-important {
border-left-color: #d9534f !important;
}
div.callout-important .callout-icon::before {
background-image: url('');
}
div.callout-important.callout-style-default .callout-title {
background-color: #f7dddc
}
div.callout-warning {
border-left-color: #f0ad4e !important;
}
div.callout-warning .callout-icon::before {
background-image: url('');
}
div.callout-warning.callout-style-default .callout-title {
background-color: #fcefdc
}
div.callout-tip {
border-left-color: #02b875 !important;
}
div.callout-tip .callout-icon::before {
background-image: url('');
}
div.callout-tip.callout-style-default .callout-title {
background-color: #ccf1e3
}
div.callout-caution {
border-left-color: #fd7e14 !important;
}
div.callout-caution .callout-icon::before {
background-image: url('');
}
div.callout-caution.callout-style-default .callout-title {
background-color: #ffe5d0
}
</style>
<style type="text/css">
.reveal div.sourceCode {
margin: 0;
overflow: auto;
}
.reveal div.hanging-indent {
margin-left: 1em;
text-indent: -1em;
}
.reveal .slide:not(.center) {
height: 100%;
}
.reveal .slide.scrollable {
overflow-y: auto;
}
.reveal .footnotes {
height: 100%;
overflow-y: auto;
}
.reveal .slide .absolute {
position: absolute;
display: block;
}
.reveal .footnotes ol {
counter-reset: ol;
list-style-type: none;
margin-left: 0;
}
.reveal .footnotes ol li:before {
counter-increment: ol;
content: counter(ol) ". ";
}
.reveal .footnotes ol li > p:first-child {
display: inline-block;
}
.reveal .slide ul,
.reveal .slide ol {
margin-bottom: 0.5em;
}
.reveal .slide ul li,
.reveal .slide ol li {
margin-top: 0.4em;
margin-bottom: 0.2em;
}
.reveal .slide ul[role="tablist"] li {
margin-bottom: 0;
}
.reveal .slide ul li > *:first-child,
.reveal .slide ol li > *:first-child {
margin-block-start: 0;
}
.reveal .slide ul li > *:last-child,
.reveal .slide ol li > *:last-child {
margin-block-end: 0;
}
.reveal .slide .columns:nth-child(3) {
margin-block-start: 0.8em;
}
.reveal blockquote {
box-shadow: none;
}
.reveal .tippy-content>* {
margin-top: 0.2em;
margin-bottom: 0.7em;
}
.reveal .tippy-content>*:last-child {
margin-bottom: 0.2em;
}
.reveal .slide > img.stretch.quarto-figure-center,
.reveal .slide > img.r-stretch.quarto-figure-center {
display: block;
margin-left: auto;
margin-right: auto;
}
.reveal .slide > img.stretch.quarto-figure-left,
.reveal .slide > img.r-stretch.quarto-figure-left {
display: block;
margin-left: 0;
margin-right: auto;
}
.reveal .slide > img.stretch.quarto-figure-right,
.reveal .slide > img.r-stretch.quarto-figure-right {
display: block;
margin-left: auto;
margin-right: 0;
}
</style>
</head>
<body class="quarto-light">
<div class="reveal">
<div class="slides">
<section id="title-slide" class="quarto-title-block center">
<h1 class="title">Workflow & Reproducible Research</h1>
<p class="subtitle">Orientation: Code Along</p>
<div class="quarto-title-authors">
</div>
</section>
<section id="agenda" class="slide level2">
<h2>Agenda</h2>
<h3 id="python-code-along">Python Code-Along</h3>
<div class="columns">
<div class="column" style="width:60%;">
<p>Data-Intensive Research Workflow</p>
<ul>
<li>Prepare</li>
<li>Wrangle</li>
<li>Explore</li>
<li>Model</li>
<li>Communicate</li>
</ul>
</div><div class="column" style="width:40%;">
<p><img data-src="img/laser-cycle.png" class="absolute" style="right: 50px; width: 1000px; "></p>
</div>
</div>
<aside class="notes">
<p>Krumm, A., Means, B., & Bienkowski, M. (2018). <a href="https://www.routledge.com/Learning-Analytics-Goes-to-School-A-Collaborative-Approach-to-Improving/Krumm-Means-Bienkowski/p/book/9781138121836">Learning Analytics Goes to School.</a>. Routledge.</p>
<style type="text/css">
span.MJX_Assistive_MathML {
position:absolute!important;
clip: rect(1px, 1px, 1px, 1px);
padding: 1px 0 0 0!important;
border: 0!important;
height: 1px!important;
width: 1px!important;
overflow: hidden!important;
display:block!important;
}</style></aside>
</section>
<section id="prepare" class="slide level2">
<h2>Prepare</h2>
<div class="columns">
<div class="column" style="width:50%;">
<p><strong>The Study</strong></p>
<p>The setting of this study was a public provider of individual online courses in a Midwestern state. Data was collected from two semesters of five online science courses and aimed to understand students’ motivation.</p>
</div><div class="column" style="width:40%;">
<p><strong>Research Question</strong></p>
<p>Is there a relationship between the time students spend in a learning management system and their final course grade?</p>
</div>
</div>
<aside class="notes">
<p>in our “Prepare” phase, we embark on understanding the setting of our study—a dive into online science courses aiming to unravel the interplay between student motivation and their engagement within a digital learning environment. Here, Python’s prowess comes to the forefront, with its ability to effortlessly ingest and preprocess data from varied sources, thanks to the pandas library. Highlight Python’s role in not just simplifying data importation via pd.read_csv() but also in enabling initial exploratory steps like identifying missing values, understanding data types, and performing simple data summarizations that lay the groundwork for more complex analysis.</p>
<style type="text/css">
span.MJX_Assistive_MathML {
position:absolute!important;
clip: rect(1px, 1px, 1px, 1px);
padding: 1px 0 0 0!important;
border: 0!important;
height: 1px!important;
width: 1px!important;
overflow: hidden!important;
display:block!important;
}</style></aside>
</section>
<section id="the-tools-of-reproducible-research" class="slide level2">
<h2>The Tools of Reproducible Research</h2>
<div class="panel-tabset">
<ul id="tabset-1" class="panel-tabset-tabby"><li><a data-tabby-default="" href="#tabset-1-1">Packages</a></li><li><a href="#tabset-1-2">Read in Data</a></li><li><a href="#tabset-1-3">Inspecting Data</a></li><li><a href="#tabset-1-4">Python Syntax</a></li></ul>
<div class="tab-content">
<div id="tabset-1-1">
<p>In Python, packages are equivalent to R’s libraries, containing functions, modules, and documentation. They can be installed using <code>pip</code> and imported into your scripts.</p>
<div id="dd363342" class="cell" data-message="false" data-execution_count="1">
<div class="sourceCode cell-code" id="cb1"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb1-1"><a href=""></a><span class="co"># Import pandas for data manipulation and matplotlib for visualization</span></span>
<span id="cb1-2"><a href=""></a><span class="im">import</span> pandas <span class="im">as</span> pd</span>
<span id="cb1-3"><a href=""></a><span class="im">import</span> matplotlib.pyplot <span class="im">as</span> plt</span>
<span id="cb1-4"><a href=""></a></span>
<span id="cb1-5"><a href=""></a><span class="co"># If not installed, you can run in the terminal:</span></span>
<span id="cb1-6"><a href=""></a><span class="co"># python3 -m pip install matplotlib plotly</span></span>
<span id="cb1-7"><a href=""></a><span class="co"># python3 -m pip install pandas</span></span>
<span id="cb1-8"><a href=""></a> </span>
<span id="cb1-9"><a href=""></a></span>
<span id="cb1-10"><a href=""></a><span class="co"># or windows</span></span>
<span id="cb1-11"><a href=""></a><span class="co"># py -m pip install matplotlib plotly</span></span>
<span id="cb1-12"><a href=""></a><span class="co"># py -m pip install pandas</span></span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
</div>
<div id="tabset-1-2">
<p>The pandas library in Python is used for data manipulation and analysis. Similar to the {readr} package in R the function like <code>pd.read_csv()</code> is for importing rectangular data from delimited text files such as comma-separated values (CSV), a preferred file format for reproducible research.</p>
<div id="cf8ef8e9" class="cell" data-message="false" data-execution_count="2">
<div class="sourceCode cell-code" id="cb2"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb2-1"><a href=""></a><span class="co"># Load data into the Python environment from a CSV file</span></span>
<span id="cb2-2"><a href=""></a>sci_data <span class="op">=</span> pd.read_csv(<span class="st">"data/sci-online-classes.csv"</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
</div>
<div id="tabset-1-3">
<p>Inspecting the dataset in Python can be done by displaying the first few rows of the DataFrame.</p>
<div id="6a2ad0d7" class="cell" data-message="false" data-execution_count="3">
<div class="sourceCode cell-code" id="cb3"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb3-1"><a href=""></a><span class="co"># Display the first five rows of the data</span></span>
<span id="cb3-2"><a href=""></a><span class="bu">print</span>(sci_data.head())</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-stdout">
<pre><code> student_id course_id total_points_possible total_points_earned \
0 43146 FrScA-S216-02 3280 2220
1 44638 OcnA-S116-01 3531 2672
2 47448 FrScA-S216-01 2870 1897
3 47979 OcnA-S216-01 4562 3090
4 48797 PhysA-S116-01 2207 1910
percentage_earned subject semester section \
0 0.676829 FrScA S216 2
1 0.756726 OcnA S116 1
2 0.660976 FrScA S216 1
3 0.677335 OcnA S216 1
4 0.865428 PhysA S116 1
Gradebook_Item Grade_Category ... q7 q8 q9 \
0 POINTS EARNED & TOTAL COURSE POINTS NaN ... 5.0 5.0 4.0
1 ATTEMPTED NaN ... 4.0 5.0 4.0
2 POINTS EARNED & TOTAL COURSE POINTS NaN ... 4.0 5.0 3.0
3 POINTS EARNED & TOTAL COURSE POINTS NaN ... 4.0 5.0 5.0
4 POINTS EARNED & TOTAL COURSE POINTS NaN ... 4.0 4.0 NaN
q10 TimeSpent TimeSpent_hours TimeSpent_std int pc uv
0 5.0 1555.1667 25.919445 -0.180515 5.0 4.5 4.333333
1 4.0 1382.7001 23.045002 -0.307803 4.2 3.5 4.000000
2 5.0 860.4335 14.340558 -0.693260 5.0 4.0 3.666667
3 5.0 1598.6166 26.643610 -0.148447 5.0 3.5 5.000000
4 3.0 1481.8000 24.696667 -0.234663 3.8 3.5 3.500000
[5 rows x 30 columns]</code></pre>
</div>
</div>
<p>What variables do you think might help us answer our research question?</p>
</div>
<div id="tabset-1-4">
<p>Python syntax for reading and inspecting data can be intuitive and powerful. For example:</p>
<p><code>sci_data = pd.read_csv("data/sci-online-classes.csv")</code></p>
<ul>
<li><strong>Functions</strong> are like verbs: pd.read_csv() is the function used to read a CSV file into a pandas DataFrame.</li>
<li><strong>Objects</strong> are the nouns: In this case, sci_data becomes the object that stores the DataFrame created by pd.read_csv(“data/sci-online-classes.csv”).</li>
<li><strong>Arguments</strong> are like adverbs: “data/sci-online-classes.csv” is the argument to pd.read_csv(), specifying the path to the CSV file. Unlike R’s read_csv, the default behavior in pandas is to infer column names from the first row in the file, so there’s no need for a col_names argument.</li>
<li><strong>Operators</strong> are like “punctuation”: = is the assignment operator in Python, used to assign the DataFrame returned by pd.read_csv(“data/sci-online-classes.csv”) to the object sci_data.</li>
</ul>
</div>
</div>
</div>
<aside class="notes">
<p>This segment underscores the significance of Python’s ecosystem in fostering reproducible research. Delve into how Python, with its rich library ecosystem—pandas for data wrangling, matplotlib and seaborn for visualization—supports the creation of transparent and replicable research workflows. Emphasize the critical role of virtual environments (using venv or conda) and dependency management tools (pip, pipenv) in encapsulating the research environment, ensuring that findings can be recreated and validated by others, a cornerstone of scientific integrity.</p>
<style type="text/css">
span.MJX_Assistive_MathML {
position:absolute!important;
clip: rect(1px, 1px, 1px, 1px);
padding: 1px 0 0 0!important;
border: 0!important;
height: 1px!important;
width: 1px!important;
overflow: hidden!important;
display:block!important;
}</style></aside>
</section>
<section id="wrangle" class="slide level2">
<h2>Wrangle</h2>
<p>Data wrangling is the process of cleaning, <a href="https://r4ds.had.co.nz/tidy-data.html?q=tidy%20data#tidy-data-1">“tidying”</a>, and transforming data. In Learning Analytics, it often involves merging (or joining) data from multiple sources.</p>
<ul>
<li>Data wrangling in Python is primarily done using pandas, allowing for cleaning, filtering, and transforming data.</li>
</ul>
<p>Since we are interested the relationship between time spent in an online course and final grades, let’s <code>select()</code> the <code>FinalGradeCEMS</code> and <code>TimeSpent</code> from <code>sci_data</code>.</p>
<div id="9e37f1c6" class="cell" data-message="false" data-execution_count="4">
<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb5-1"><a href=""></a><span class="co"># Selecting specific columns and creating a new DataFrame</span></span>
<span id="cb5-2"><a href=""></a>sci_data_selected <span class="op">=</span> sci_data[[<span class="st">'FinalGradeCEMS'</span>, <span class="st">'TimeSpent'</span>]]</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<aside class="notes">
<p>Data wrangling represents the transformative process of refining our dataset into a format ripe for analysis. Here, spotlight pandas’ capability to perform sophisticated data manipulations—filtering rows, selecting columns of interest, handling missing data, and merging datasets. This step is pivotal in distilling our raw data into a structured form that precisely addresses our research questions. Discuss practical examples, like using .dropna() to clean data or .merge() to combine datasets, illustrating Python’s efficiency in handling typical data preparation challenges.</p>
<style type="text/css">
span.MJX_Assistive_MathML {
position:absolute!important;
clip: rect(1px, 1px, 1px, 1px);
padding: 1px 0 0 0!important;
border: 0!important;
height: 1px!important;
width: 1px!important;
overflow: hidden!important;
display:block!important;
}</style></aside>
</section>
<section id="explore" class="slide level2">
<h2>Explore</h2>
<div class="panel-tabset">
<ul id="tabset-2" class="panel-tabset-tabby"><li><a data-tabby-default="" href="#tabset-2-1">EDA</a></li><li><a href="#tabset-2-2">Graph-template</a></li><li><a href="#tabset-2-3">Our first graph</a></li></ul>
<div class="tab-content">
<div id="tabset-2-1">
<p>Exploratory data analysis in Python involves processes of <strong>describing</strong> your data numerically or graphically, which often includes:</p>
<ul>
<li><p><strong>calculating</strong> summary statistics like frequency, means, and standard deviations</p></li>
<li><p><strong>visualizing</strong> your data through charts and graphs</p></li>
</ul>
<p>EDA can be used to help answer research questions, generate new questions about your data, discover relationships between and among variables, and create new variables (i.e., feature engineering) for data modeling.</p>
</div>
<div id="tabset-2-2">
<div class="columns">
<div class="column" style="width:50%;">
<p>The workflow for making a graph typically involves:</p>
<ol type="1">
<li><p>Choosing the type of plot or visualization you want to create.</p></li>
<li><p>Using the plotting function directly with your data.</p></li>
<li><p>Optionally customizing the plot with titles, labels, and other aesthetic features.</p></li>
</ol>
</div><div class="column" style="width:50%;">
<p>A simple template for creating a scatter plot could look like this:</p>
<div id="74e85d0a" class="cell" data-message="false" data-execution_count="5">
<div class="sourceCode cell-code" id="cb6"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb6-1"><a href=""></a><span class="co">#import packages for visualization</span></span>
<span id="cb6-2"><a href=""></a><span class="im">import</span> matplotlib.pyplot <span class="im">as</span> plt</span>
<span id="cb6-3"><a href=""></a><span class="im">import</span> seaborn <span class="im">as</span> sns</span>
<span id="cb6-4"><a href=""></a></span>
<span id="cb6-5"><a href=""></a><span class="co"># Basic scatter plot template</span></span>
<span id="cb6-6"><a href=""></a><span class="co"># sns.scatterplot(x=<VARIABLE1>, y=<VARIABLE2>, data=<DATA>)</span></span>
<span id="cb6-7"><a href=""></a><span class="co"># plt.show()</span></span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
</div>
</div>
</div>
<div id="tabset-2-3">
<div class="columns">
<div class="column" style="width:50%;">
<p>Scatter plots are useful for visualizing the relationship between two continuous variables. Here’s how to create one with seaborn.</p>
</div><div class="column" style="width:50%;">
<div id="e2b87d0b" class="cell" data-message="false" data-execution_count="6">
<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb7-1"><a href=""></a><span class="co"># Create a scatter plot showing the relationship between time spent and final grades</span></span>
<span id="cb7-2"><a href=""></a>sns.scatterplot(x<span class="op">=</span><span class="st">'TimeSpent'</span>, y<span class="op">=</span><span class="st">'FinalGradeCEMS'</span>, data<span class="op">=</span>sci_data)</span>
<span id="cb7-3"><a href=""></a>plt.xlabel(<span class="st">'Time Spent'</span>)</span>
<span id="cb7-4"><a href=""></a>plt.ylabel(<span class="st">'Final Grade CEMS'</span>)</span>
<span id="cb7-5"><a href=""></a>plt.show()</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-display">
<div>
<figure>
<p><img data-src="orientation-code-along-slides-python_files/figure-revealjs/cell-7-output-1.png" width="816" height="429"></p>
</figure>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<aside class="notes">
<p>Our journey through Exploratory Data Analysis (EDA) with Python equips us with the tools to uncover hidden patterns and relationships. Utilize this segment to showcase how seaborn and matplotlib enable us to visualize data in ways that reveal these underlying structures, whether through histograms, scatter plots, or box plots. EDA is our investigative tool, prompting hypotheses and guiding the direction of our modeling efforts. Explicitly demonstrate creating a scatter plot with sns.scatterplot() to examine the relationship between time spent and final grades, highlighting the direct feedback loop between visual exploration and analytical insight.</p>
<p><strong>Components of the Scatter Plot Command:</strong> sns.scatterplot(): This is the function from the seaborn library (often imported as sns) used to create scatter plots. Seaborn is a statistical data visualization library built on top of matplotlib, offering a higher-level interface for drawing attractive and informative statistical graphics.</p>
<p>x=<variable1>: This argument specifies the data for the x-axis. <variable1> should be replaced with the name of the column from your dataset that you want to display on the x-axis.</variable1></variable1></p>
<p>y=<variable2>: Similarly, this argument specifies the data for the y-axis. <variable2> should be replaced with the name of another column from your dataset that you want to display on the y-axis.</variable2></variable2></p>
<p>data=<data>: This argument is where you specify the dataset containing <variable1> and <variable2>. <data> should be replaced with the variable name of your dataset, which is typically a pandas DataFrame.</data></variable2></variable1></data></p>
<p>plt.show(): After creating the scatter plot with sns.scatterplot(), this command from matplotlib’s pyplot interface (often imported as plt) is used to display the plot. Without this command, the plot may not be visible (depending on your environment, like Jupyter Notebooks might automatically show plots even without explicitly calling plt.show()).</p>
<style type="text/css">
span.MJX_Assistive_MathML {
position:absolute!important;
clip: rect(1px, 1px, 1px, 1px);
padding: 1px 0 0 0!important;
border: 0!important;
height: 1px!important;
width: 1px!important;
overflow: hidden!important;
display:block!important;
}</style></aside>
</section>
<section id="model" class="slide level2">
<h2>Model</h2>
<div class="panel-tabset">
<ul id="tabset-3" class="panel-tabset-tabby"><li><a data-tabby-default="" href="#tabset-3-1">Dealing with missing data (NaN)</a></li><li><a href="#tabset-3-2">A Simple Model</a></li><li><a href="#tabset-3-3">Interpret</a></li></ul>
<div class="tab-content">
<div id="tabset-3-1">
<p>Before adding a constant or fitting the model, ensure the data doesn’t contain NaNs (Not a Number) or infinite values. In a pandas DataFrame, you can use a combination of methods provided by <code>pandas</code> and <code>NumPy</code>.</p>
<div id="8db1e644" class="cell" data-message="false" data-execution_count="7">
<div class="sourceCode cell-code" id="cb8"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb8-1"><a href=""></a><span class="im">import</span> numpy <span class="im">as</span> np</span>
<span id="cb8-2"><a href=""></a></span>
<span id="cb8-3"><a href=""></a><span class="co"># Drop rows with NaNs in 'TimeSpent' or 'FinalGradeCEMS'</span></span>
<span id="cb8-4"><a href=""></a>sci_data_clean <span class="op">=</span> sci_data.dropna(subset<span class="op">=</span>[<span class="st">'TimeSpent'</span>, <span class="st">'FinalGradeCEMS'</span>])</span>
<span id="cb8-5"><a href=""></a></span>
<span id="cb8-6"><a href=""></a><span class="co"># Replace infinite values with NaN and then drop those rows (if any)</span></span>
<span id="cb8-7"><a href=""></a>sci_data_clean.replace([np.inf, <span class="op">-</span>np.inf], np.nan, inplace<span class="op">=</span><span class="va">True</span>)</span>
<span id="cb8-8"><a href=""></a>sci_data_clean.dropna(subset<span class="op">=</span>[<span class="st">'TimeSpent'</span>, <span class="st">'FinalGradeCEMS'</span>], inplace<span class="op">=</span><span class="va">True</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
</div>
<div id="tabset-3-2">
<p>You can use libraries such as <code>statsmodels</code> or <code>scikit-learn</code>. We’ll dive much deeper into modeling in subsequent learning labs, but for now let’s see if there is a statistically significant relationship between students’ final grades, <code>FinaGradeCEMS</code>, and the <code>TimeSpent</code> in the LMS:</p>
<div id="d347a1d6" class="cell" data-message="false" data-execution_count="8">
<div class="sourceCode cell-code" id="cb9"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb9-1"><a href=""></a><span class="co"># add the statsmodels</span></span>
<span id="cb9-2"><a href=""></a><span class="im">import</span> statsmodels.api <span class="im">as</span> sm</span>
<span id="cb9-3"><a href=""></a></span>
<span id="cb9-4"><a href=""></a><span class="co"># Add a constant term for the intercept to the independent variable</span></span>
<span id="cb9-5"><a href=""></a>X <span class="op">=</span> sm.add_constant(sci_data_clean[<span class="st">'TimeSpent'</span>]) <span class="co"># Independent variable</span></span>
<span id="cb9-6"><a href=""></a>y <span class="op">=</span> sci_data_clean[<span class="st">'FinalGradeCEMS'</span>] <span class="co"># Dependent variable</span></span>
<span id="cb9-7"><a href=""></a></span>
<span id="cb9-8"><a href=""></a><span class="co"># Fit the model</span></span>
<span id="cb9-9"><a href=""></a>model <span class="op">=</span> sm.OLS(y, X).fit()</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
</div>
<div id="tabset-3-3">
<div id="968a18c4" class="cell" data-message="false" data-execution_count="9">
<div class="sourceCode cell-code" id="cb10"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb10-1"><a href=""></a><span class="co"># Print the summary of the model</span></span>
<span id="cb10-2"><a href=""></a><span class="bu">print</span>(model.summary())</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-stdout">
<pre><code> OLS Regression Results
==============================================================================
Dep. Variable: FinalGradeCEMS R-squared: 0.134
Model: OLS Adj. R-squared: 0.132
Method: Least Squares F-statistic: 87.99
Date: Sun, 14 Jul 2024 Prob (F-statistic): 1.53e-19
Time: 15:22:54 Log-Likelihood: -2548.5
No. Observations: 573 AIC: 5101.
Df Residuals: 571 BIC: 5110.
Df Model: 1
Covariance Type: nonrobust
==============================================================================
coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
const 65.8085 1.491 44.131 0.000 62.880 68.737
TimeSpent 0.0061 0.001 9.380 0.000 0.005 0.007
==============================================================================
Omnibus: 136.292 Durbin-Watson: 1.537
Prob(Omnibus): 0.000 Jarque-Bera (JB): 252.021
Skew: -1.381 Prob(JB): 1.88e-55
Kurtosis: 4.711 Cond. No. 3.97e+03
==============================================================================
Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 3.97e+03. This might indicate that there are
strong multicollinearity or other numerical problems.</code></pre>
</div>
</div>
</div>
</div>
</div>
<aside class="notes">
<p><strong>Overview Modeling</strong> Modeling is where we apply statistical techniques to interpret our data’s story. With Python’s statsmodels, we can fit a linear regression model to quantify the relationship between variables of interest. This section is an opportunity to detail the process of model selection, fitting, and evaluation within Python’s framework. Discuss the interpretation of regression outputs from statsmodels, such as coefficients for understanding variable impact, p-values for statistical significance, and R-squared values for model fit. This not only aids in hypothesis testing but also in predicting outcomes based on observed data.</p>
<p><strong>Dealing with Missing Data (NaN)</strong> Importance: Handling missing data is a crucial preprocessing step to ensure the quality and reliability of your statistical models. Missing values (NaNs) or infinite values in your dataset can lead to errors or biased results when fitting models. Thus, cleaning your data is essential.</p>
<p>Process: Drop NaNs: This step removes any rows in your dataset that contain NaN values in specific columns of interest (TimeSpent or FinalGradeCEMS). This ensures that the model only uses complete cases without missing values, which could distort the analysis.</p>
<p>Handle Infinite Values: Infinite values, which can result from divisions by zero or other operations, are not suitable for most statistical models. Replacing these with NaN (np.inf or -np.inf to np.nan) and then dropping them is a way to ensure that your dataset is finite and can be processed by statistical modeling tools.</p>
<p><strong>A Simple Model</strong> Importance: Building a statistical model allows us to quantify the relationship between variables in our dataset. In this case, you’re interested in the relationship between TimeSpent in the learning management system (LMS) and students’ final grades (FinalGradeCEMS). A simple linear regression model can provide insights into whether there is a statistically significant association between these variables.</p>
<p>Process: Add a Constant Term: Many statistical models, including linear regression, assume that your equation will have an intercept term. Adding a constant to your independent variables (using sm.add_constant()) accommodates this intercept in the model.</p>
<p>Fit the Model: Using statsmodels’ OLS function (Ordinary Least Squares), the model is fitted to the data. This process involves finding the parameters (intercept and slope) that minimize the sum of squared residuals, providing the best linear approximation of the relationship between the independent and dependent variables.</p>
<p>Interpret Importance: After fitting the model, interpreting the output is crucial for understanding the relationship between the variables. The model summary provides several key pieces of information, including the coefficients of the model, their statistical significance, and the overall fit of the model.</p>
<p>Process: Coefficients: Indicate the expected change in the dependent variable (e.g., FinalGradeCEMS) for a one-unit increase in the independent variable (e.g., TimeSpent), assuming all other variables in the model are held constant.</p>
<p>P-values: Help determine the statistical significance of each coefficient. A low p-value (typically <0.05) suggests that the effect of the independent variable on the dependent variable is statistically significant and not due to chance.</p>
<p>Model Fit: Indicators like R-squared value give an idea of how well the model explains the variability in the dependent variable. A higher R-squared value suggests a better fit, although it’s important to consider other factors and diagnostics to evaluate model performance fully.</p>
<style type="text/css">
span.MJX_Assistive_MathML {
position:absolute!important;
clip: rect(1px, 1px, 1px, 1px);
padding: 1px 0 0 0!important;
border: 0!important;
height: 1px!important;
width: 1px!important;
overflow: hidden!important;
display:block!important;
}</style></aside>
</section>
<section id="communicate" class="slide level2">
<h2>Communicate</h2>
<div class="panel-tabset">
<ul id="tabset-4" class="panel-tabset-tabby"><li><a data-tabby-default="" href="#tabset-4-1">Data Products</a></li><li><a href="#tabset-4-2">Dashboards</a></li><li><a href="#tabset-4-3">Websites</a></li><li><a href="#tabset-4-4">Books</a></li><li><a href="#tabset-4-5">…and more</a></li></ul>
<div class="tab-content">
<div id="tabset-4-1">
<p>Krumm et al. (2018) have outlined the following 3-step process for communicating finding with education stakeholders:</p>
<ol type="1">
<li><p><strong>Select.</strong> Selecting analyses that are most important and useful to an intended audience, as well as selecting a format for displaying that info (e.g. chart, table).</p></li>
<li><p><strong>Polish.</strong> Refining or polishing data products, by adding or editing titles, labels, and notations and by working with colors and shapes to highlight key points.</p></li>
<li><p><strong>Narrate.</strong> Writing a narrative pairing a data product with its related research question and describing how best to interpret and use the data product.</p></li>
</ol>
</div>
<div id="tabset-4-2">
<p><img src="img/dashboards.png" height="350px"></p>
<p><a href="https://quarto.org/docs/dashboards/" class="uri">https://quarto.org/docs/dashboards/</a></p>
</div>
<div id="tabset-4-3">
<p><img src="img/websites.png" height="350px"></p>
<p><a href="https://quarto.org/docs/websites/" class="uri">https://quarto.org/docs/websites/</a></p>
</div>
<div id="tabset-4-4">
<p><img src="img/books.png" height="350px"> ]</p>
<p><a href="https://quarto.org/docs/books/" class="uri">https://quarto.org/docs/books/</a></p>
</div>
<div id="tabset-4-5">
<ul>
<li><p><a href="https://quarto.org/docs/websites/website-blog.html"><strong>BLOGS</strong> - https://quarto.org/docs/websites/website-blog.html</a></p></li>
<li><p><a href="https://quarto.org/docs/manuscripts/"><strong>Manuscripts</strong> - https://quarto.org/docs/manuscripts/</a></p></li>
<li><p><a href="https://quarto.org/docs/presentations/revealjs/"><strong>REVEAL JS</strong> - https://quarto.org/docs/presentations/revealjs/</a></p></li>
<li><p><a href="https://quarto.org/docs/presentations/powerpoint.html"><strong>Powerpoint</strong> - https://quarto.org/docs/presentations/powerpoint.html</a></p></li>
</ul>
</div>
</div>
</div>
<aside class="notes">
<p>In this section, we highlight the essence of communicating research findings effectively. Krumm et al. (2018) advocate for a targeted approach: select key findings that resonate with your audience, polish your data products for clarity and engagement, and narrate your insights to ensure they are actionable. Quarto enhances this process by supporting diverse formats for data products, from interactive dashboards and websites to traditional publications like books and manuscripts. Its flexibility allows for tailored communication strategies, ensuring your research not only reaches but also impacts your intended audience. By leveraging Quarto, we can create compelling narratives that are accessible across various platforms, fostering broader understanding and application of our findings.</p>
<p>Quarto stands out in the communication phase due to its inherent design for reproducibility and collaboration. It’s a powerful tool that allows researchers to seamlessly integrate Python analysis with narrative text, creating a cohesive document that not only presents findings but also the code and data behind those conclusions. This integration promotes transparency and facilitates peer review, ensuring that the research can be easily validated and reproduced by others.</p>
<p>Moreover, Quarto’s ability to produce a wide array of output formats—from interactive web pages and dashboards to PDFs and slides—ensures that our communication is not just wide-reaching but also adaptable to the preferences and needs of diverse audiences. Whether stakeholders prefer a static report, an interactive web application, or a formal presentation, Quarto enables us to cater to these varied requirements without needing to alter the underlying content. This flexibility, combined with the platform’s emphasis on reproducibility, positions Quarto as an ideal choice for modern data-driven research communication.</p>
<style type="text/css">
span.MJX_Assistive_MathML {
position:absolute!important;
clip: rect(1px, 1px, 1px, 1px);
padding: 1px 0 0 0!important;
border: 0!important;
height: 1px!important;
width: 1px!important;
overflow: hidden!important;
display:block!important;
}</style></aside>
</section>
<section>
<section id="whats-next" class="title-slide slide level1 center">
<h1>What’s Next?</h1>
<div class="columns">
<div class="column" style="width:50%;">
<p><strong>Our First LASER Badge!</strong> Next you will complete an interactive “case study” which is a key component to each learning lab.</p>
<p>Navigate to the Files tab and open the following file:</p>
<p><code>laser-lab-case-study.RMD</code> <strong>Change this to the new one</strong></p>
</div><div class="column" style="width:50%;">
<p><strong>Essential Readings</strong></p>
<ul>
<li><p><a href="https://github.com/christophergandrud/Rep-Res-Book">Reproducible Research with R and RStudio</a> (chapters 1 & 2)</p></li>
<li><p><a href="https://www.routledge.com/Learning-Analytics-Goes-to-School-A-Collaborative-Approach-to-Improving/Krumm-Means-Bienkowski/p/book/9781138121836">Learning Analytics Goes to School</a> (pages 28 - 58)</p></li>
<li><p><a href="https://datascienceineducation.com">Data Science in Education Using R</a></p></li>
<li><p><a href="https://r4ds.had.co.nz/index.html">R for Data Science</a></p></li>
</ul>
</div>
</div>
</section>
<section id="acknowledgements" class="slide level2">
<h2>Acknowledgements</h2>
<div class="columns">
<div class="column" style="width:20%;">
<div class="quarto-figure quarto-figure-center">
<figure>
<p><img data-src="img/nsf.jpg" class="quarto-figure quarto-figure-center" style="width:80.0%"></p>
</figure>
</div>
</div><div class="column" style="width:80%;">
<p>This work was supported by the National Science Foundation grants DRL-2025090 and DRL-2321128 (ECR:BCSER). Any opinions, findings, and conclusions expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.</p>
</div>
</div>
<div class="quarto-auto-generated-content">
<p><img src="img/LASERLogoB.png" class="slide-logo"></p>
<div class="footer footer-default">
<p><a href="https://www.go.ncsu.edu/laser-institute">go.ncsu.edu/laser-institute</a></p><a href="https://www.go.ncsu.edu/laser-institute">
</a></div><a href="https://www.go.ncsu.edu/laser-institute">
</a></div><a href="https://www.go.ncsu.edu/laser-institute">
</a></section></section><a href="https://www.go.ncsu.edu/laser-institute">
</a></div><a href="https://www.go.ncsu.edu/laser-institute">
</a></div><a href="https://www.go.ncsu.edu/laser-institute">
<script>window.backupDefine = window.define; window.define = undefined;</script>
<script src="orientation-code-along-slides-python_files/libs/revealjs/dist/reveal.js"></script>
<!-- reveal.js plugins -->
<script src="orientation-code-along-slides-python_files/libs/revealjs/plugin/quarto-line-highlight/line-highlight.js"></script>
<script src="orientation-code-along-slides-python_files/libs/revealjs/plugin/pdf-export/pdfexport.js"></script>
<script src="orientation-code-along-slides-python_files/libs/revealjs/plugin/reveal-menu/menu.js"></script>
<script src="orientation-code-along-slides-python_files/libs/revealjs/plugin/reveal-menu/quarto-menu.js"></script>
<script src="orientation-code-along-slides-python_files/libs/revealjs/plugin/reveal-chalkboard/plugin.js"></script>
<script src="orientation-code-along-slides-python_files/libs/revealjs/plugin/quarto-support/support.js"></script>
<script src="orientation-code-along-slides-python_files/libs/revealjs/plugin/notes/notes.js"></script>
<script src="orientation-code-along-slides-python_files/libs/revealjs/plugin/search/search.js"></script>
<script src="orientation-code-along-slides-python_files/libs/revealjs/plugin/zoom/zoom.js"></script>
<script src="orientation-code-along-slides-python_files/libs/revealjs/plugin/math/math.js"></script>
<script>window.define = window.backupDefine; window.backupDefine = undefined;</script>
<script>
// Full list of configuration options available at:
// https://revealjs.com/config/
Reveal.initialize({
'controlsAuto': true,
'previewLinksAuto': true,
'pdfSeparateFragments': false,
'autoAnimateEasing': "ease",
'autoAnimateDuration': 1,
'autoAnimateUnmatched': true,
'menu': {"side":"left","useTextContentForMissingTitles":true,"markers":false,"loadIcons":false,"custom":[{"title":"Tools","icon":"<i class=\"fas fa-gear\"></i>","content":"<ul class=\"slide-menu-items\">\n<li class=\"slide-tool-item active\" data-item=\"0\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.fullscreen(event)\"><kbd>f</kbd> Fullscreen</a></li>\n<li class=\"slide-tool-item\" data-item=\"1\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.speakerMode(event)\"><kbd>s</kbd> Speaker View</a></li>\n<li class=\"slide-tool-item\" data-item=\"2\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.overview(event)\"><kbd>o</kbd> Slide Overview</a></li>\n<li class=\"slide-tool-item\" data-item=\"3\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.togglePdfExport(event)\"><kbd>e</kbd> PDF Export Mode</a></li>\n<li class=\"slide-tool-item\" data-item=\"4\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.toggleChalkboard(event)\"><kbd>b</kbd> Toggle Chalkboard</a></li>\n<li class=\"slide-tool-item\" data-item=\"5\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.toggleNotesCanvas(event)\"><kbd>c</kbd> Toggle Notes Canvas</a></li>\n<li class=\"slide-tool-item\" data-item=\"6\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.downloadDrawings(event)\"><kbd>d</kbd> Download Drawings</a></li>\n<li class=\"slide-tool-item\" data-item=\"7\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.keyboardHelp(event)\"><kbd>?</kbd> Keyboard Help</a></li>\n</ul>"}],"openButton":true},
'chalkboard': {"buttons":false},
'smaller': false,
// Display controls in the bottom right corner
controls: false,
// Help the user learn the controls by providing hints, for example by
// bouncing the down arrow when they first encounter a vertical slide
controlsTutorial: false,
// Determines where controls appear, "edges" or "bottom-right"
controlsLayout: 'edges',
// Visibility rule for backwards navigation arrows; "faded", "hidden"
// or "visible"
controlsBackArrows: 'faded',
// Display a presentation progress bar
progress: true,
// Display the page number of the current slide
slideNumber: 'c/t',
// 'all', 'print', or 'speaker'
showSlideNumber: 'all',
// Add the current slide number to the URL hash so that reloading the
// page/copying the URL will return you to the same slide
hash: true,
// Start with 1 for the hash rather than 0
hashOneBasedIndex: false,
// Flags if we should monitor the hash and change slides accordingly
respondToHashChanges: true,
// Push each slide change to the browser history
history: true,
// Enable keyboard shortcuts for navigation
keyboard: true,
// Enable the slide overview mode
overview: true,
// Disables the default reveal.js slide layout (scaling and centering)
// so that you can use custom CSS layout
disableLayout: false,
// Vertical centering of slides
center: false,
// Enables touch navigation on devices with touch input
touch: true,
// Loop the presentation
loop: false,
// Change the presentation direction to be RTL
rtl: false,
// see https://revealjs.com/vertical-slides/#navigation-mode
navigationMode: 'linear',
// Randomizes the order of slides each time the presentation loads
shuffle: false,
// Turns fragments on and off globally
fragments: true,
// Flags whether to include the current fragment in the URL,
// so that reloading brings you to the same fragment position
fragmentInURL: false,
// Flags if the presentation is running in an embedded mode,
// i.e. contained within a limited portion of the screen
embedded: false,
// Flags if we should show a help overlay when the questionmark
// key is pressed
help: true,
// Flags if it should be possible to pause the presentation (blackout)
pause: true,
// Flags if speaker notes should be visible to all viewers
showNotes: false,
// Global override for autoplaying embedded media (null/true/false)
autoPlayMedia: null,
// Global override for preloading lazy-loaded iframes (null/true/false)
preloadIframes: null,
// Number of milliseconds between automatically proceeding to the
// next slide, disabled when set to 0, this value can be overwritten
// by using a data-autoslide attribute on your slides
autoSlide: 0,
// Stop auto-sliding after user input
autoSlideStoppable: true,
// Use this method for navigation when auto-sliding
autoSlideMethod: null,
// Specify the average time in seconds that you think you will spend
// presenting each slide. This is used to show a pacing timer in the
// speaker view
defaultTiming: null,
// Enable slide navigation via mouse wheel
mouseWheel: false,
// The display mode that will be used to show slides
display: 'block',
// Hide cursor if inactive
hideInactiveCursor: true,
// Time before the cursor is hidden (in ms)
hideCursorTime: 5000,
// Opens links in an iframe preview overlay
previewLinks: false,
// Transition style (none/fade/slide/convex/concave/zoom)
transition: 'none',
// Transition speed (default/fast/slow)
transitionSpeed: 'default',