-
Notifications
You must be signed in to change notification settings - Fork 0
/
diffusion_pipeline.py
812 lines (695 loc) · 31 KB
/
diffusion_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
import itertools
from typing import Any, Callable, Dict, Optional, Union, List, Tuple
import spacy
import torch
from torch.nn import functional as F
from diffusers import StableDiffusionPipeline, AutoencoderKL, UNet2DConditionModel
from diffusers.pipelines.stable_diffusion import (
StableDiffusionPipelineOutput,
StableDiffusionSafetyChecker,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import (
EXAMPLE_DOC_STRING,
rescale_noise_cfg,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_attend_and_excite import (
AttentionStore,
AttendExciteAttnProcessor,
)
import numpy as np
import math
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import (
logging,
replace_example_docstring,
)
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from compute_loss import (
get_attention_map_index_to_wordpiece,
split_indices,
calculate_positive_loss,
calculate_negative_loss,
get_indices,
start_token,
end_token,
align_wordpieces_indices,
extract_attribution_indices,
extract_attribution_indices_with_verbs,
extract_attribution_indices_with_verb_root,
)
# import image from PIL
from PIL import Image
logger = logging.get_logger(__name__)
class EbamaDiffusionPipeline(StableDiffusionPipeline):
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: KarrasDiffusionSchedulers,
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPImageProcessor,
requires_safety_checker: bool = True,
):
super().__init__(
vae,
text_encoder,
tokenizer,
unet,
scheduler,
safety_checker,
feature_extractor,
requires_safety_checker,
)
self.parser = spacy.load("en_core_web_trf")
self.subtrees_indices = None
self.doc = None
# self.doc = ""#self.parser(prompt)
def _aggregate_and_get_attention_maps_per_token(self):
attention_maps = self.attention_store.aggregate_attention(
from_where=("up", "down", "mid"),
)
attention_maps_list = _get_attention_maps_list(attention_maps=attention_maps)
return attention_maps_list
@staticmethod
def _update_latent(
latents: torch.Tensor, loss: torch.Tensor, step_size: float
) -> torch.Tensor:
"""Update the latent according to the computed loss."""
grad_cond = torch.autograd.grad(
loss.requires_grad_(True), [latents], retain_graph=True
)[0]
latents = latents - step_size * grad_cond
return latents
def register_attention_control(self):
attn_procs = {}
cross_att_count = 0
for name in self.unet.attn_processors.keys():
if name.startswith("mid_block"):
place_in_unet = "mid"
elif name.startswith("up_blocks"):
place_in_unet = "up"
elif name.startswith("down_blocks"):
place_in_unet = "down"
else:
continue
cross_att_count += 1
attn_procs[name] = AttendExciteAttnProcessor(
attnstore=self.attention_store, place_in_unet=place_in_unet
)
self.unet.set_attn_processor(attn_procs)
self.attention_store.num_att_layers = cross_att_count
# Based on StableDiffusionPipeline.__call__ . New code is annotated with NEW.
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
guidance_rescale: float = 0.0,
attn_res: Optional[Tuple[int]] = (16, 16),
step_size: float = 20.0,
parsed_prompt: str = None,
):
r"""
The call function to the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
A higher guidance scale value encourages the model to generate images closely linked to the text
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor is generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
provided, text embeddings are generated from the `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback (`Callable`, *optional*):
A function that calls every `callback_steps` steps during inference. The function is called with the
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function is called. If not specified, the callback is called at
every step.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
guidance_rescale (`float`, *optional*, defaults to 0.7):
Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when
using zero terminal SNR.
attn_res (`tuple`, *optional*, default computed from width and height):
The 2D resolution of the semantic attention map.
step_size (`float`, *optional*, default to 20.0):
Controls the step size of each Ebama update.
parsed_prompt (`str`, *optional*, default to None):
Examples:
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
otherwise a `tuple` is returned where the first element is a list with the generated images and the
second element is a list of `bool`s indicating whether the corresponding generated image contains
"not-safe-for-work" (nsfw) content.
"""
# NEW - use parsed_prompt instead of prompt
if parsed_prompt:
self.doc = parsed_prompt
else:
self.doc = self.parser(prompt)
# 0. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
height,
width,
callback_steps,
negative_prompt,
prompt_embeds,
negative_prompt_embeds,
)
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
text_encoder_lora_scale = (
cross_attention_kwargs.get("scale", None)
if cross_attention_kwargs is not None
else None
)
negative_prompt_embeds, prompt_embeds = self._encode_prompt(
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
lora_scale=text_encoder_lora_scale,
)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
if do_classifier_free_guidance:
prompt_embeds = torch.stack([negative_prompt_embeds, prompt_embeds], dim=0)
# print(f"Prompt embeds shape: {prompt_embeds.shape}")
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 5. Prepare latent variables
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 6. Prepare extra step kwargs.
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# NEW - stores the attention calculated in the unet
if attn_res is None:
attn_res = int(np.ceil(width / 32)), int(np.ceil(height / 32))
self.attention_store = AttentionStore(attn_res)
self.register_attention_control()
text_embeddings = [prompt_embeds[1][None, ...]]
# 7. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# NEW
self.i = i
latents = self._step(
latents,
text_embeddings,
t,
i,
step_size,
cross_attention_kwargs,
prompt,
)
# expand the latents if we are doing classifier free guidance
latent_model_input = (
torch.cat([latents] * 2) if do_classifier_free_guidance else latents
)
latent_model_input = self.scheduler.scale_model_input(
latent_model_input, t
)
# predict the noise residual
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
noise_pred = rescale_noise_cfg(
noise_pred, noise_pred_text[0], guidance_rescale=guidance_rescale
)
latents = self.scheduler.step(
noise_pred, t, latents, **extra_step_kwargs, return_dict=False
)[0]
# call the callback, if provided
if i == len(timesteps) - 1 or (
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
if not output_type == "latent":
image = self.vae.decode(
latents / self.vae.config.scaling_factor, return_dict=False
)[0]
# image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
has_nsfw_concept = None
else:
image = latents
has_nsfw_concept = None
if has_nsfw_concept is None:
do_denormalize = [True] * image.shape[0]
else:
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
image = self.image_processor.postprocess(
image, output_type=output_type, do_denormalize=do_denormalize
)
if not return_dict:
return (image, has_nsfw_concept)
return (
StableDiffusionPipelineOutput(
images=image, nsfw_content_detected=has_nsfw_concept
),
None,
)
def _step(
self,
latents,
text_embeddings,
t,
i,
step_size,
cross_attention_kwargs,
prompt,
):
with torch.enable_grad():
max_iter_to_alter = 1
updated_latents = []
for latent, text_embedding in zip(latents, text_embeddings):
# Forward pass of denoising with text conditioning
# latent = latent.unsqueeze(0)
# text_embedding = text_embedding.unsqueeze(0)
latent = latent[None, ...]
for k in range(max_iter_to_alter):
latent = latent.clone().detach().requires_grad_(True)
self.unet(
latent,
t,
encoder_hidden_states=text_embedding,
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)
self.unet.zero_grad()
# Get attention maps
attention_maps = self._aggregate_and_get_attention_maps_per_token()
loss = self._compute_loss(
attention_maps=attention_maps, prompt=prompt
)
if loss != 0:
latent = self._update_latent(
latents=latent, loss=loss, step_size=step_size
)
# print(f"Iteration {i, k} | Loss: {loss:0.4f}")
updated_latents.append(latent)
latents = torch.cat(updated_latents, dim=0)
return latents
def _compute_max_attention_per_index(
self,
attention_maps: torch.Tensor,
) -> List[torch.Tensor]:
"""Computes the maximum attention value for each of the tokens we wish to alter."""
attention_for_text = torch.stack(attention_maps, dim=-1)[:, :, 1:-1]
# attention_for_text *= 100
attention_for_text = torch.nn.functional.softmax(attention_for_text, dim=-1)
# shift indices by 1 to account for the start token
indices = [
index[-1] - 1 if isinstance(index[-1], int) else index[-1][0] - 1
for index in self.subtrees_indices
]
# Extract the maximum values
max_indices_list = []
for i in indices:
image = attention_for_text[:, :, i]
smoothing = GaussianSmoothing().to(attention_for_text.device)
input = F.pad(image.unsqueeze(0).unsqueeze(0), (1, 1, 1, 1), mode="reflect")
image = smoothing(input).squeeze(0).squeeze(0)
max_indices_list.append(image.max())
return max_indices_list
@staticmethod
def _compute_excite_loss(
max_attention_per_index: List[torch.Tensor],
) -> torch.Tensor:
"""Computes the attend-and-excite loss using the maximum attention value for each token."""
losses = [max(0, 1.0 - curr_max) for curr_max in max_attention_per_index]
loss = max(losses)
return loss
def _excitation_loss(self, attention_maps, prompt, attn_map_idx_to_wp):
max_attention_per_index = self._compute_max_attention_per_index(
attention_maps=attention_maps,
)
excite_loss = self._compute_excite_loss(max_attention_per_index)
return excite_loss
def _excitation_loss_ours(self, attention_maps, prompt, attn_map_idx_to_wp):
max_attention_per_index = self._compute_max_attention_per_index(
attention_maps=attention_maps,
)
excite_loss = self._compute_excite_loss_ours(max_attention_per_index)
return excite_loss
@staticmethod
def _compute_excite_loss_ours(
max_attention_per_index: List[torch.Tensor],
) -> torch.Tensor:
"""Computes the attend-and-excite loss using the maximum attention value for each token."""
loss = -sum(max_attention_per_index)
return loss
def _compute_volumn_attention_per_index(self, attention_maps):
attention_for_text = torch.stack(attention_maps, dim=-1)[:, :, 1:-1]
# attention_for_text *= 100
attention_for_text = torch.nn.functional.softmax(attention_for_text, dim=-1)
# shift indices by 1 to account for the start token
indices = [
index[-1] - 1 if isinstance(index[-1], int) else index[-1][0] - 1
for index in self.subtrees_indices
]
# Extract the maximum values
weight_per_token = attention_for_text.sum(dim=[0, 1]) / attention_for_text.sum()
return weight_per_token[indices]
def _sum_loss(self, attention_maps, prompt, attn_map_idx_to_wp):
volumn_attention_per_index = self._compute_volumn_attention_per_index(
attention_maps=attention_maps,
)
sum_loss = self._compute_excite_loss(volumn_attention_per_index)
return sum_loss
def _compute_loss(
self, attention_maps: List[torch.Tensor], prompt: Union[str, List[str]]
) -> torch.Tensor:
attn_map_idx_to_wp = get_attention_map_index_to_wordpiece(
self.tokenizer, prompt
)
if self.i > 25:
return 0
loss_s = self._attribution_loss_ours(attention_maps, prompt, attn_map_idx_to_wp)
loss_t = self._excitation_loss_ours(attention_maps, prompt, attn_map_idx_to_wp)
loss = loss_s + self.lambda_ours * loss_t
return loss
def _attribution_loss_ours(
self,
attention_maps: List[torch.Tensor],
prompt: Union[str, List[str]],
attn_map_idx_to_wp,
):
self.subtrees_indices = self._extract_attribution_indices_ours(prompt)
subtrees_indices = self.subtrees_indices
loss = 0
for subtree_indices in subtrees_indices:
noun, modifier = split_indices(subtree_indices)
all_subtree_pairs = list(itertools.product(noun, modifier))
positive_loss, negative_loss = self._calculate_losses(
attention_maps,
all_subtree_pairs,
subtree_indices,
attn_map_idx_to_wp,
)
loss += positive_loss
loss += negative_loss
return loss
def _calculate_losses(
self,
attention_maps,
all_subtree_pairs,
subtree_indices,
attn_map_idx_to_wp,
):
positive_loss = []
negative_loss = []
for pair in all_subtree_pairs:
noun, modifier = pair
if modifier:
positive_loss.append(
calculate_positive_loss(
attention_maps, modifier, noun, dist=self.dist
)
)
negative_loss.append(
calculate_negative_loss(
attention_maps,
modifier,
noun,
subtree_indices,
attn_map_idx_to_wp,
dist=self.dist,
ours=True,
)
)
positive_loss = sum(positive_loss)
negative_loss = sum(negative_loss)
return positive_loss, negative_loss
def _align_indices(self, prompt, spacy_pairs):
wordpieces2indices = get_indices(self.tokenizer, prompt)
paired_indices = []
collected_spacy_indices = (
set()
) # helps track recurring nouns across different relations (i.e., cases where there is more than one instance of the same word)
for pair in spacy_pairs:
curr_collected_wp_indices = (
[]
) # helps track which nouns and amods were added to the current pair (this is useful in sentences with repeating amod on the same relation (e.g., "a red red red bear"))
for member in pair:
for idx, wp in wordpieces2indices.items():
if wp in [start_token, end_token]:
continue
wp = wp.replace("</w>", "")
if member.text == wp:
if idx not in curr_collected_wp_indices and idx not in collected_spacy_indices:
curr_collected_wp_indices.append(idx)
break
# take care of wordpieces that are split up
elif member.text.startswith(wp) and wp != member.text: # can maybe be while loop
wp_indices = align_wordpieces_indices(
wordpieces2indices, idx, member.text
)
# check if all wp_indices are not already in collected_spacy_indices
if wp_indices and (wp_indices not in curr_collected_wp_indices) and all([wp_idx not in collected_spacy_indices for wp_idx in wp_indices]):
curr_collected_wp_indices.append(wp_indices)
break
for collected_idx in curr_collected_wp_indices:
if isinstance(collected_idx, list):
for idx in collected_idx:
collected_spacy_indices.add(idx)
else:
collected_spacy_indices.add(collected_idx)
paired_indices.append(curr_collected_wp_indices)
return paired_indices
def _align_indices_ours(self, prompt, spacy_pairs):
wordpieces2indices = get_indices(self.tokenizer, prompt)
paired_indices = []
for pair in spacy_pairs:
noun = pair[0]
paired_indices.append(wordpieces2indices[noun])
return paired_indices
def _extract_attribution_indices_ours(self, prompt):
# extract standard attribution indices
pairs = extract_attribution_indices(self.doc)
# extract attribution indices with verbs in between
pairs_2 = extract_attribution_indices_with_verb_root(self.doc)
pairs_3 = extract_attribution_indices_with_verbs(self.doc)
# make sure there are no duplicates
pairs = unify_lists(pairs, pairs_2, pairs_3)
# print(f"Final pairs collected: {pairs}")
paired_indices = self._align_indices(prompt, pairs)
nouns_already_extracted = []
attributes_already_extracted = []
# nouns already extracted
for indices in paired_indices:
temp = indices[-1]
temp1 = indices[:-1]
if isinstance(temp, list):
nouns_already_extracted += temp
else:
nouns_already_extracted.append(temp)
if isinstance(temp1, list):
attributes_already_extracted += temp1
else:
attributes_already_extracted.append(temp1)
# extract nouns
nouns = extract_noun_indices(self.doc)
noun_indices = self._align_indices(prompt, [[noun] for noun in nouns])
# use for loop
for noun in noun_indices:
if noun:
if (
noun[0] not in nouns_already_extracted
and noun[0] not in attributes_already_extracted
):
paired_indices += [[None, noun[0]]]
print(f"Final pairs collected: {paired_indices}")
return paired_indices
def extract_noun_indices(doc):
noun_indices = []
# nouns_indices = []
for k, token in enumerate(doc):
if token.pos_ == "NOUN" or token.pos_ == "PROPN":
noun_indices.append(token)
# nouns_indices.append([k])
return noun_indices
def _get_attention_maps_list(attention_maps: torch.Tensor) -> List[torch.Tensor]:
attention_maps *= 100
attention_maps_list = [
attention_maps[:, :, i] for i in range(attention_maps.shape[2])
]
return attention_maps_list
def is_sublist(sub, main):
# This function checks if 'sub' is a sublist of 'main'
return len(sub) < len(main) and all(item in main for item in sub)
def unify_lists(lists_1, lists_2, lists_3):
unified_list = lists_1 + lists_2 + lists_3
sorted_list = sorted(unified_list, key=len)
seen = set()
result = []
for i in range(len(sorted_list)):
if tuple(sorted_list[i]) in seen: # Skip if already added
continue
sublist_to_add = True
for j in range(i + 1, len(sorted_list)):
if is_sublist(sorted_list[i], sorted_list[j]):
sublist_to_add = False
break
if sublist_to_add:
result.append(sorted_list[i])
seen.add(tuple(sorted_list[i]))
return result
class GaussianSmoothing(torch.nn.Module):
"""
Arguments:
Apply gaussian smoothing on a 1d, 2d or 3d tensor. Filtering is performed seperately for each channel in the input
using a depthwise convolution.
channels (int, sequence): Number of channels of the input tensors. Output will
have this number of channels as well.
kernel_size (int, sequence): Size of the gaussian kernel. sigma (float, sequence): Standard deviation of the
gaussian kernel. dim (int, optional): The number of dimensions of the data.
Default value is 2 (spatial).
"""
# channels=1, kernel_size=kernel_size, sigma=sigma, dim=2
def __init__(
self,
channels: int = 1,
kernel_size: int = 3,
sigma: float = 0.5,
dim: int = 2,
):
super().__init__()
if isinstance(kernel_size, int):
kernel_size = [kernel_size] * dim
if isinstance(sigma, float):
sigma = [sigma] * dim
# The gaussian kernel is the product of the
# gaussian function of each dimension.
kernel = 1
meshgrids = torch.meshgrid(
[torch.arange(size, dtype=torch.float32) for size in kernel_size]
)
for size, std, mgrid in zip(kernel_size, sigma, meshgrids):
mean = (size - 1) / 2
kernel *= (
1
/ (std * math.sqrt(2 * math.pi))
* torch.exp(-(((mgrid - mean) / (2 * std)) ** 2))
)
# Make sure sum of values in gaussian kernel equals 1.
kernel = kernel / torch.sum(kernel)
# Reshape to depthwise convolutional weight
kernel = kernel.view(1, 1, *kernel.size())
kernel = kernel.repeat(channels, *[1] * (kernel.dim() - 1))
self.register_buffer("weight", kernel)
self.groups = channels
if dim == 1:
self.conv = F.conv1d
elif dim == 2:
self.conv = F.conv2d
elif dim == 3:
self.conv = F.conv3d
else:
raise RuntimeError(
"Only 1, 2 and 3 dimensions are supported. Received {}.".format(dim)
)
def forward(self, input):
"""
Arguments:
Apply gaussian filter to input.
input (torch.Tensor): Input to apply gaussian filter on.
Returns:
filtered (torch.Tensor): Filtered output.
"""
return self.conv(
input,
weight=self.weight.to(input.dtype).to(input.device),
groups=self.groups,
)