forked from tensorpack/tensorpack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinception-bn.py
executable file
·196 lines (162 loc) · 7.52 KB
/
inception-bn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
# File: inception-bn.py
# Author: Yuxin Wu <ppwwyyxxc@gmail.com>
import cv2
import argparse
import numpy as np
import os
import tensorflow as tf
from tensorpack import *
from tensorpack.tfutils.symbolic_functions import *
from tensorpack.tfutils.summary import *
TOTAL_BATCH_SIZE = 64 * 6
NR_GPU = 6
BATCH_SIZE = TOTAL_BATCH_SIZE // NR_GPU
INPUT_SHAPE = 224
"""
Inception-BN model on ILSVRC12.
See "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift", arxiv:1502.03167
This config reaches 71% single-crop validation accuracy after 150k steps with 6 TitanX.
Learning rate may need a different schedule for different number of GPUs (because batch size will be different).
"""
class Model(ModelDesc):
def _get_inputs(self):
return [InputDesc(tf.float32, [None, INPUT_SHAPE, INPUT_SHAPE, 3], 'input'),
InputDesc(tf.int32, [None], 'label')]
def _build_graph(self, inputs):
image, label = inputs
image = image / 128.0
def inception(name, x, nr1x1, nr3x3r, nr3x3, nr233r, nr233, nrpool, pooltype):
stride = 2 if nr1x1 == 0 else 1
with tf.variable_scope(name) as scope:
outs = []
if nr1x1 != 0:
outs.append(Conv2D('conv1x1', x, nr1x1, 1))
x2 = Conv2D('conv3x3r', x, nr3x3r, 1)
outs.append(Conv2D('conv3x3', x2, nr3x3, 3, stride=stride))
x3 = Conv2D('conv233r', x, nr233r, 1)
x3 = Conv2D('conv233a', x3, nr233, 3)
outs.append(Conv2D('conv233b', x3, nr233, 3, stride=stride))
if pooltype == 'max':
x4 = MaxPooling('mpool', x, 3, stride, padding='SAME')
else:
assert pooltype == 'avg'
x4 = AvgPooling('apool', x, 3, stride, padding='SAME')
if nrpool != 0: # pool + passthrough if nrpool == 0
x4 = Conv2D('poolproj', x4, nrpool, 1)
outs.append(x4)
return tf.concat(outs, 3, name='concat')
with argscope(Conv2D, nl=BNReLU, use_bias=False):
l = (LinearWrap(image)
.Conv2D('conv0', 64, 7, stride=2)
.MaxPooling('pool0', 3, 2, padding='SAME')
.Conv2D('conv1', 64, 1)
.Conv2D('conv2', 192, 3)
.MaxPooling('pool2', 3, 2, padding='SAME')())
# 28
l = inception('incep3a', l, 64, 64, 64, 64, 96, 32, 'avg')
l = inception('incep3b', l, 64, 64, 96, 64, 96, 64, 'avg')
l = inception('incep3c', l, 0, 128, 160, 64, 96, 0, 'max')
br1 = (LinearWrap(l)
.Conv2D('loss1conv', 128, 1)
.FullyConnected('loss1fc', 1024, nl=tf.nn.relu)
.FullyConnected('loss1logit', 1000, nl=tf.identity)())
loss1 = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=br1, labels=label)
loss1 = tf.reduce_mean(loss1, name='loss1')
# 14
l = inception('incep4a', l, 224, 64, 96, 96, 128, 128, 'avg')
l = inception('incep4b', l, 192, 96, 128, 96, 128, 128, 'avg')
l = inception('incep4c', l, 160, 128, 160, 128, 160, 128, 'avg')
l = inception('incep4d', l, 96, 128, 192, 160, 192, 128, 'avg')
l = inception('incep4e', l, 0, 128, 192, 192, 256, 0, 'max')
br2 = Conv2D('loss2conv', l, 128, 1)
br2 = FullyConnected('loss2fc', br2, 1024, nl=tf.nn.relu)
br2 = FullyConnected('loss2logit', br2, 1000, nl=tf.identity)
loss2 = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=br2, labels=label)
loss2 = tf.reduce_mean(loss2, name='loss2')
# 7
l = inception('incep5a', l, 352, 192, 320, 160, 224, 128, 'avg')
l = inception('incep5b', l, 352, 192, 320, 192, 224, 128, 'max')
l = GlobalAvgPooling('gap', l)
logits = FullyConnected('linear', l, out_dim=1000, nl=tf.identity)
prob = tf.nn.softmax(logits, name='output')
loss3 = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=label)
loss3 = tf.reduce_mean(loss3, name='loss3')
cost = tf.add_n([loss3, 0.3 * loss2, 0.3 * loss1], name='weighted_cost')
add_moving_summary([cost, loss1, loss2, loss3])
wrong = prediction_incorrect(logits, label, 1, name='wrong-top1')
add_moving_summary(tf.reduce_mean(wrong, name='train_error_top1'))
wrong = prediction_incorrect(logits, label, 5, name='wrong-top5')
add_moving_summary(tf.reduce_mean(wrong, name='train_error_top5'))
# weight decay on all W of fc layers
wd_w = tf.train.exponential_decay(0.0002, get_global_step_var(),
80000, 0.7, True)
wd_cost = tf.multiply(wd_w, regularize_cost('.*/W', tf.nn.l2_loss), name='l2_regularize_loss')
add_param_summary(('.*/W', ['histogram'])) # monitor W
self.cost = tf.add_n([cost, wd_cost], name='cost')
add_moving_summary(wd_cost, self.cost)
def _get_optimizer(self):
lr = get_scalar_var('learning_rate', 0.045, summary=True)
return tf.train.MomentumOptimizer(lr, 0.9)
def get_data(train_or_test):
isTrain = train_or_test == 'train'
ds = dataset.ILSVRC12(args.data, train_or_test, shuffle=True if isTrain else False)
meta = dataset.ILSVRCMeta()
pp_mean = meta.get_per_pixel_mean()
if isTrain:
# TODO use the augmentor in GoogleNet
augmentors = [
imgaug.Resize((256, 256)),
imgaug.Brightness(30, False),
imgaug.Contrast((0.8, 1.2), True),
imgaug.MapImage(lambda x: x - pp_mean),
imgaug.RandomCrop((224, 224)),
imgaug.Flip(horiz=True),
]
else:
augmentors = [
imgaug.Resize((256, 256)),
imgaug.MapImage(lambda x: x - pp_mean),
imgaug.CenterCrop((224, 224)),
]
ds = AugmentImageComponent(ds, augmentors, copy=False)
ds = BatchData(ds, BATCH_SIZE, remainder=not isTrain)
if isTrain:
ds = PrefetchDataZMQ(ds, 6)
return ds
def get_config():
logger.auto_set_dir()
dataset_train = get_data('train')
dataset_val = get_data('val')
return TrainConfig(
dataflow=dataset_train,
callbacks=[
ModelSaver(),
InferenceRunner(dataset_val, [
ClassificationError('wrong-top1', 'val-top1-error'),
ClassificationError('wrong-top5', 'val-top5-error')]),
ScheduledHyperParamSetter('learning_rate',
[(8, 0.03), (14, 0.02), (17, 5e-3),
(19, 3e-3), (24, 1e-3), (26, 2e-4),
(30, 5e-5)])
],
model=Model(),
steps_per_epoch=5000,
max_epoch=80,
)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', help='comma separated list of GPU(s) to use.')
parser.add_argument('--load', help='load model')
parser.add_argument('--data', help='ImageNet data root directory', required=True)
args = parser.parse_args()
if args.gpu:
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
config = get_config()
if args.load:
config.session_init = SaverRestore(args.load)
if args.gpu:
config.nr_tower = len(args.gpu.split(','))
assert config.nr_tower == NR_GPU
SyncMultiGPUTrainer(config).train()