The classifier was trained on data found in AMPERSAND: Argument Mining for PERSuAsive oNline Discussions and Parsing Argumentation Structures in Persuasive Essays, which can be found on S3: s3://convosumm/data/claim-premise-data/
.
Download the model and run on a dummy sentence:
aws s3 cp --recursive s3://convosumm/checkpoints/CLPR/ $CLPR_PATH
python scripts/arg_classifier_test.py $CLPR_PATH "This is a test sentence."
python scripts/arg_classifier.py
python scripts/process_arg_classifier_results.py
Run claim/premise prediction for each comment and then join claims into a graph, potentially across comments
See the _process()
function for details about the expected input format.
python Argument-Graph-Mining-code/recap_am/app.join_separate_graphs.py INPUT_FILENAME OUTPUT_DIR
Run claim/premise prediction for each commment, create subject node for each comment and connect all subject nodes to conversation node (no connections between comments)
See the _process()
function for details about the expected input format.
python Argument-Graph-Mining-code/recap_am/app.separate_graphs.py INPUT_FILENAME OUTPUT_DIR
python scripts/load_graph2txt.py $OUTPUT_DIR
./scripts/prep.sh
./scripts/finetune.sh $BART_PATH $DATA_DIR $CHECKPOINT_DIR $TENSORBOARD_DIR $CUDA_VISIBLE_DEVICES $UPDATE_FREQ 3e-5 20 200 -1
python scripts/inference.py $MODEL_DIR checkpoint_best.pt $DATA-BIN $TEST_SOURCE_FILE $OUTPUT_FILE 4 1 80 120 $BATCH_SIZE 2048 ./misc/encoder.json ./misc/vocab.bpe
See ./longformer-code/run.sh
for an example of running the Longformer.