generated from YMJS-Irfan/curl
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain_dpfedsam.py
227 lines (177 loc) · 10 KB
/
main_dpfedsam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import argparse
import logging
import os
import random
import sys
import pdb
import numpy as np
import torch
torch.set_num_threads(1)
sys.path.insert(0, os.path.abspath("./DP-FedSAM"))
from fedml_api.model.cv.cnn import cnn_emnist
from fedml_api.model.cv.lenet5 import LeNet5
from fedml_api.data_preprocessing.emnist.data_loader import load_partition_data_emnist
from fedml_api.data_preprocessing.cifar10.data_loader import load_partition_data_cifar10
from fedml_api.data_preprocessing.cifar100.data_loader import load_partition_data_cifar100
from fedml_api.data_preprocessing.tiny_imagenet.data_loader import load_partition_data_tiny
from fedml_api.model.cv.resnet import customized_resnet18, tiny_resnet18
from fedml_api.model.cv.cnn_cifar10 import cnn_cifar10, cnn_cifar100
from fedml_api.dpfedsam.dpfedsam_api import DPFedSAMAPI
from fedml_api.dpfedsam.my_model_trainer import MyModelTrainer
def logger_config(log_path, logging_name):
logger = logging.getLogger(logging_name)
logger.setLevel(level=logging.DEBUG)
handler = logging.FileHandler(log_path, mode='w',encoding='UTF-8')
handler.setLevel(level=logging.DEBUG)
formatter = logging.Formatter('%(message)s')
handler.setFormatter(formatter)
logger.addHandler(handler)
return logger
def add_args(parser):
"""
parser : argparse.ArgumentParser
return a parser added with args required by fit
"""
# Training settings
parser.add_argument('--model', type=str, default='resnet18', metavar='N',
help="network architecture, supporting 'cnn_cifar10', 'cnn_cifar100', 'resnet18', 'vgg11'")
parser.add_argument('--dataset', type=str, default='cifar10', metavar='N',
help='dataset used for training')
parser.add_argument('--momentum', type=float, default=0.5, metavar='N',
help='momentum')
parser.add_argument('--data_dir', type=str, default='data/data',
help='data directory, please feel free to change the directory to the right place')
parser.add_argument('--partition_method', type=str, default='dir', metavar='N',
help="current supporting three types of data partition, one called 'dir' short for Dirichlet"
"one called 'n_cls' short for how many classes allocated for each client"
"and one called 'my_part' for partitioning all clients into PA shards with default latent Dir=0.3 distribution")
parser.add_argument('--partition_alpha', type=float, default=0.6, metavar='PA',
help='available parameters for data partition method')
parser.add_argument('--batch_size', type=int, default=50, metavar='N',
help='local batch size for training')
parser.add_argument('--client_optimizer', type=str, default='sgd',
help='SGD with momentum; adam')
parser.add_argument("--rho", default=0.5, type=float, help="the perturbation radio for the SAM optimizer.")
parser.add_argument('--lr', type=float, default=0.1, metavar='LR',
help='learning rate (default: 0.1)')
parser.add_argument('--lr_decay', type=float, default=0.998, metavar='LR_decay',
help='learning rate decay (default: 0.998)')
parser.add_argument('--wd', help='weight decay parameter;', type=float, default=5e-4)
parser.add_argument('--epochs', type=int, default=30, metavar='EP',
help='local training epochs for each client')
parser.add_argument("--adaptive", default=True, type=bool, help="True if you want to use the Adaptive SAM.")
parser.add_argument('--client_num_in_total', type=int, default=500, metavar='NN',
help='the number of clients')
parser.add_argument('--frac', type=float, default=0.1, metavar='NN',
help='the selection fraction of total clients in each round')
parser.add_argument('--comm_round', type=int, default=300,
help='how many round of communications we shoud use')
parser.add_argument('--frequency_of_the_test', type=int, default=1,
help='the frequency of the algorithms')
parser.add_argument('--gpu', type=int, default=0,
help='gpu')
parser.add_argument('--ci', type=int, default=0,
help='CI')
parser.add_argument("--tag", type=str, default="test")
parser.add_argument("--seed", type=int, default=0)
parser.add_argument('--sigma', type=float, default=0.95,
help='the standard deviation of client-level DP noise')
parser.add_argument('--C', type=float, default=0.2,
help='the threshold of clipping in DP')
parser.add_argument('--num_experiments', type=int, default=3,
help='the number of experiments')
return parser
def load_data(args, dataset_name):
if dataset_name == "cifar10":
args.data_dir += "cifar10"
train_data_num, test_data_num, train_data_global, test_data_global, \
train_data_local_num_dict, train_data_local_dict, test_data_local_dict, \
class_num = load_partition_data_cifar10(args.data_dir, args.partition_method,
args.partition_alpha, args.client_num_in_total, args.batch_size, logger)
elif dataset_name == "emnist":
args.data_dir += "emnist"
train_data_num, test_data_num, train_data_global, test_data_global = None, None, None, None
# train_data_local_num_dict, train_data_local_dict, test_data_local_dict, \
train_data_local_num_dict, train_data_local_dict, test_data_local_dict = load_partition_data_emnist(args.data_dir, args.partition_method,
args.partition_alpha, args.client_num_in_total, args.batch_size, logger)
class_num = 62
else:
if dataset_name == "cifar100":
args.data_dir += "cifar100"
train_data_num, test_data_num, train_data_global, test_data_global, \
train_data_local_num_dict, train_data_local_dict, test_data_local_dict, \
class_num = load_partition_data_cifar100(args.data_dir, args.partition_method,
args.partition_alpha, args.client_num_in_total,
args.batch_size, logger)
elif dataset_name == "tiny":
args.data_dir += "tiny_imagenet"
train_data_num, test_data_num, train_data_global, test_data_global, \
train_data_local_num_dict, train_data_local_dict, test_data_local_dict, \
class_num = load_partition_data_tiny(args.data_dir, args.partition_method,
args.partition_alpha, args.client_num_in_total,
args.batch_size, logger)
dataset = [train_data_num, test_data_num, train_data_global, test_data_global,
train_data_local_num_dict, train_data_local_dict, test_data_local_dict, class_num]
return dataset
def create_model(args, model_name,class_num,logger):
# logger.info("create_model. model_name = %s" % (model_name))
model = None
if model_name == "lenet5":
model = LeNet5(class_num)
elif model_name == "cnn_cifar10":
model = cnn_cifar10()
elif model_name == "cnn_cifar100":
model = cnn_cifar100()
elif model_name =="resnet18" and args.dataset != 'tiny':
model = customized_resnet18(class_num=class_num)
elif model_name == "resnet18" and args.dataset == 'tiny':
model = tiny_resnet18(class_num=class_num)
elif model_name == "cnn_emnist":
model = cnn_emnist(class_num)
return model
def custom_model_trainer(args, model, logger):
return MyModelTrainer(model, args, logger)
if __name__ == "__main__":
parser = add_args(argparse.ArgumentParser(description='FedAvg-standalone'))
args = parser.parse_args()
# print("torch version{}".format(torch.__version__))
data_partition = args.partition_method
if data_partition != "homo":
data_partition += str(args.partition_alpha)
args.identity = "dpfedsam" + "-"+args.dataset+"-"+ data_partition
args. client_num_per_round = int(args.client_num_in_total* args.frac)
args.identity += "-mdl" + args.model
args.identity += "-C" + str(args.C)
args.identity += "-rho" + str(args.rho)
args.identity += "-cm" + str(args.comm_round) + "-total_clnt" + str(args.client_num_in_total)
args.identity += "-lr" + str(args.lr)
args.identity += '-seed' + str(args.seed)
args.identity += "-epoch"+ str(args.epochs)
args.identity += "-momentum"+ str(args.momentum)
cur_dir = os.path.abspath(__file__).rsplit("/", 1)[0]
log_path = os.path.join(cur_dir, 'LOG/' + args.dataset + '/' + args.identity + '.log')
logger = logger_config(log_path='LOG/' + args.dataset + '/' + args.identity + '.log', logging_name=args.identity)
logger.info(args)
device = torch.device("cuda:" + str(args.gpu) )
logger.info(device)
logger.info("running at device{}".format(device))
# Set the random seed. The np.random seed determines the dataset partition.
# The torch_manual_seed determines the initial weight.
# We fix these two, so that we can reproduce the result.
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
torch.backends.cudnn.deterministic = True
for exper_index in range(args.num_experiments):
# load data
dataset = load_data(args, args.dataset)
# create model.
if args.dataset == "emnist":
model = create_model(args, model_name=args.model, class_num= 62, logger = logger)
else:
model = create_model(args, model_name=args.model, class_num= len(dataset[-1][0]), logger = logger)
model_trainer = custom_model_trainer(args, model, logger)
# logger.info(model)
DPfedSAMAPI = DPFedSAMAPI(dataset, device, args, model_trainer, logger)
DPfedSAMAPI.train(exper_index)