-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_ddp.py
350 lines (284 loc) · 13.8 KB
/
train_ddp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import argparse
import os
import torch
import yaml
import torch.nn as nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
from audio import Audio
from utils.model import get_model, get_vocoder, get_param_num
from utils.tools import to_device, log, synth_one_sample,synth_toy, get_mask_from_lengths
from dataset import Dataset
from evaluate import evaluate
import torch.distributed as dist
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP
import torch.multiprocessing as mp
# from model.BayesianPDA import BayesianPDA
from model.BayesianDTW import BayesianDTW
from matplotlib import pyplot as plt
import pdb
from torch import autograd
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def cleanup():
dist.destroy_process_group()
def moving_average(loss,n=5):
# Build a tensor list
loss_list = []
if len(loss_list) >= n:
# drop the first loss
loss_list = loss_list[1:,:]
loss_list.append(loss.data)
baseline = loss-sum(loss_list)/len(loss_list)
if baseline.all() == 0:
return loss.detach()
else:
return baseline
def setup(rank, world_size):
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12355'
dist.init_process_group("nccl", rank=rank, world_size=world_size)
def prepare(train_config, preprocess_config, rank, world_size, batch_size=32, pin_memory=False, num_workers=0):
""" Distribute the dataloader """
if train_config["dataset"] == 'ryanspeech':
print('Trainning the model on RyanSpeech dataset ...')
# Get dataset
dataset = Dataset(
"train.txt", preprocess_config, train_config, sort=True, drop_last=True
)
batch_size = train_config["optimizer"]["batch_size"]
group_size = 1 # Set this larger than 1 to enable sorting in Dataset
assert batch_size * group_size < len(dataset)
audio_processor = Audio(preprocess_config)
else:
raise("wrong dataset name!")
sampler = DistributedSampler(dataset, num_replicas=world_size, rank=rank, shuffle=True, drop_last=False)
dataloader = DataLoader(dataset, batch_size=batch_size*group_size,
pin_memory=pin_memory,
num_workers=num_workers,
drop_last=False,
shuffle=True,
sampler=sampler,
collate_fn=dataset.collate_fn,)
return dataloader, audio_processor
def main(rank, args, configs, world_size):
print("Prepare training ...")
preprocess_config, model_config, train_config = configs
setup(rank,world_size)
device = rank
# Get data loader
dataloader, audio_processor = prepare(train_config,preprocess_config,rank,world_size)
# Get model and optimizer
model, optimizer = get_model(args, configs, device, train=True)
model = model.to(rank)
# wrap the model with DDP
model = DDP(model, device_ids=[rank], output_device=rank, find_unused_parameters=True)
num_param = get_param_num(model)
print("Number of BDPVAE Parameters:", num_param)
# Load vocoder
vocoder = get_vocoder(model_config, device)
# Init logger
for p in train_config["path"].values():
os.makedirs(p, exist_ok=True)
train_log_path = os.path.join(train_config["path"]["log_path"], "train")
val_log_path = os.path.join(train_config["path"]["log_path"], "val")
os.makedirs(train_log_path, exist_ok=True)
os.makedirs(val_log_path, exist_ok=True)
train_logger = SummaryWriter(train_log_path)
val_logger = SummaryWriter(val_log_path)
# Training
debug_step = train_config["step"]["debug_step"]
step = args.restore_step + 1
epoch = 1
grad_acc_step = train_config["optimizer"]["grad_acc_step"]
grad_clip_thresh = train_config["optimizer"]["grad_clip_thresh"]
total_step = train_config["step"]["total_step"]
log_step = train_config["step"]["log_step"]
save_step = train_config["step"]["save_step"]
synth_step = train_config["step"]["synth_step"]
length_weight = train_config["length"]["length_weight"]
kl_weight_init = train_config["kl"]["kl_weight_init"]
kl_weight_end = train_config["kl"]["kl_weight_end"]
kl_weight_inc_epochs = train_config["kl"]["kl_weight_increase_epoch"]
kl_weight_step = (kl_weight_end - kl_weight_init) / kl_weight_inc_epochs
mel_weight = train_config["length"]["mel_weight"]
alpha = model_config["common"]["alpha"]
outer_bar = tqdm(total=total_step, desc="Training", position=0)
outer_bar.n = args.restore_step
outer_bar.update()
# reduction factor computation
while True:
kl_weight = kl_weight_init + kl_weight_step * epoch if epoch <= kl_weight_inc_epochs else kl_weight_end
inner_bar = tqdm(total=len(dataloader), desc="Epoch {}".format(epoch), position=1)
for batchs in dataloader:
dataloader.sampler.set_epoch(epoch)
for batch in batchs:
# batch: ids, raw_texts,speakers,texts,text_lens,max(text_lens),mels,mel_lens,max(mel_lens)
batch = to_device(batch, rank)
print(step)
if step == 1:
with torch.no_grad():
model.module.init(speakers = batch[2:][0], text_inputs=batch[2:][1], mel_lengths=batch[2:][5], text_lengths=batch[2:][2])#,f0 = batch[2:][7])
(predictions, mel_l2, kl_divergence, length_l2,logprob, latent_samples,mask,text_embd,W)= model(
speakers = batch[2:][0], inputs = batch[2:][1], text_lengths = batch[2:][2], max_src_len = batch[2:][3], # f0 = batch[2:][7],
mel_targets = batch[2:][4], mel_lengths = batch[2:][5], max_mel_len = batch[2:][6],
reduce_loss=False)
if train_config["optimizer"]["baseline"]:
# Reinforce moving average baseline
baseline_loss = moving_average(mel_l2.detach(), n = 10)
reinforce_loss = torch.mean(baseline_loss*logprob)
else:
reinforce_loss = torch.mean(mel_l2.detach()*logprob)
# reinforce_loss = torch.mean(logprob)
# Take average between batch
mel_l2 = torch.mean(mel_l2)
kl_divergence = torch.mean(kl_divergence)
length_l2 = torch.mean(length_l2)
# Total loss
# total_loss = mel_weight * mel_l2 + length_weight * length_l2 \
# + kl_weight * torch.max(kl_divergence, torch.tensor(0., device=device)) - reinforce_loss + reinforce_loss.detach()
total_loss = mel_weight * mel_l2 + length_weight * length_l2 \
+ kl_weight * torch.max(kl_divergence, torch.tensor(0., device=device)) - reinforce_loss + reinforce_loss.detach()
# Backward
total_loss = total_loss / grad_acc_step
total_loss.backward()
if step % grad_acc_step == 0:
# Clipping gradients to avoid gradient explosion
nn.utils.clip_grad_norm_(model.parameters(), grad_clip_thresh)
optimizer.step_and_update_lr()
optimizer.zero_grad()
# total_loss.backward() #retain_graph=True)
# optimizer.step_and_update_lr()
# optimizer.zero_grad()
if train_config["dataset"] in ['timit_pho', 'popcs2'] and step % log_step == 0:
# Calculate MAD
mel_len = batch[2:][5]
# len_mask = get_mask_from_lengths(mel_len)
pred_mel2ph = (torch.argmax(latent_samples,2)+1)
MAD = torch.mean(torch.sum(pred_mel2ph == batch[2:][-1],-1)/mel_len)
# MAD = torch.mean(torch.abs(latent_samples.sum(1) - batch[2:][-1]))
train_logger.add_scalar("Accuracy/mad", MAD, step)
# pdb.set_trace()
# # Calculate MAD
# MAD = torch.mean(torch.abs(latent_samples.sum(1) - batch[2:][-1]))
# train_logger.add_scalar("Accuracy/mad", MAD, step)
if step % debug_step == 0:
spect = spec_embs.cpu().detach().numpy()
fig_sample, axes = plt.subplots(1, 1, squeeze=False)
axes[0][0].imshow(spect[0].T,origin="lower")
plt.savefig("./spect_feature.png")
for name, param in policy_model.named_parameters():
print(name, param.grad)
pdb.set_trace()
pdb.set_trace()
if step % log_step == 0:
losses = [l.item() for l in list([total_loss, mel_l2, kl_divergence, length_l2, reinforce_loss])]
message1 = "Step {}/{}, ".format(step, total_step)
message2 = "Total Loss: {:.4f}, Mel Loss: {:.4f}, KLD Loss: {:.4f}, Duration Loss: {:.4f}, Reinforce Loss:{:.4f}".format(
*losses
)
with open(os.path.join(train_log_path, "log.txt"), "a") as f:
f.write(message1 + message2 + "\n")
outer_bar.write(message1 + message2)
log(train_logger, step, losses=losses, kl_weight=kl_weight)
if step % synth_step == 0 and rank == 0:
if train_config["dataset"] == 'toy':
fig,latent_figs = synth_toy(mel_input, mel_lengths,predictions,batchs['duration'],latent_samples,model_config,preprocess_config)
log(
train_logger,
fig=fig,
tag="Training/step_{}_{}".format(step, 'toy data'),
)
log(
train_logger,
fig=latent_figs,
tag="Training_Duration_Matrix/step_{}_{}".format(step, 'toy data'),
)
else:
fig, wav_reconstruction, wav_prediction, tag, latent_figs, text_fig= synth_one_sample(
batch,
predictions,
latent_samples,
text_embd,
vocoder,
audio_processor,
model_config,
preprocess_config,
)
log(
train_logger,
fig=fig,
tag="Training/step_{}_{}".format(step,tag),
step = step
)
log(
train_logger,
fig=latent_figs,
tag="Training_latent_alignment/step_{}_{}".format(step,tag),
step = step
)
sampling_rate = preprocess_config["preprocessing"]["audio"][
"sampling_rate"
]
log(
train_logger,
audio=wav_reconstruction,
sampling_rate=sampling_rate,
tag="Training/step_{}_{}_reconstructed".format(step, tag),
step = step
)
log(
train_logger,
audio=wav_prediction,
sampling_rate=sampling_rate,
tag="Training/step_{}_{}_synthesized".format(step, tag),
step = step
)
if step % save_step == 0 and rank == 0:
torch.save(
{
"model": model.state_dict(),
"optimizer": optimizer._optimizer.state_dict(),
},
os.path.join(
train_config["path"]["ckpt_path"],
"{}.pth.tar".format(step),
),
)
if step == total_step:
quit()
step += 1
outer_bar.update(1)
inner_bar.update(1)
# cleanup()
epoch += 1
if __name__ == "__main__":
__spec__ = "ModuleSpec(name='builtins', loader=<class '_frozen_importlib.BuiltinImporter'>)"
parser = argparse.ArgumentParser()
parser.add_argument("--restore_step", type=int, default=0)
parser.add_argument("--pretrain", type=str, default=False)
parser.add_argument(
"-p",
"--preprocess_config",
type=str,
required=True,
help="path to preprocess.yaml",
)
parser.add_argument(
"-m", "--model_config", type=str, required=True, help="path to model.yaml"
)
parser.add_argument(
"-t", "--train_config", type=str, required=True, help="path to train.yaml"
)
args = parser.parse_args()
# Read Config
preprocess_config = yaml.load(
open(args.preprocess_config, "r"), Loader=yaml.FullLoader
)
model_config = yaml.load(open(args.model_config, "r"), Loader=yaml.FullLoader)
train_config = yaml.load(open(args.train_config, "r"), Loader=yaml.FullLoader)
configs = (preprocess_config, model_config, train_config)
world_size = torch.cuda.device_count()
# main(args, configs)
mp.spawn(main,args=(args, configs, world_size), nprocs = world_size)