
A Brief History of Hackerdom

✦ ✦ ✦

I explore the origins of the hacker culture, including pre-

history among the Real Programmers, the glory days of

the MIT hackers, and how the early ARPAnet nurtured

the first network nation. I describe the early rise and even-

tual stagnation of Unix, the new hope from Finland, and

how ‘‘the last true hacker’’ became the next generation’s

patriarch. I sketch the way Linux and the mainstreaming

of the Internet brought the hacker culture from the fringes

of public consciousness to its current prominence.

1

22 December 2000 17:45

22 December 2000 17:45

Prologue: The Real Programmers

In the beginning, there were Real Programmers.

That’s not what they called themselves. They didn’t call themselves
hackers, either, or anything in particular; the sobriquet ‘Real Pro-
grammer’ wasn’t coined until after 1980, retrospectively by one of
their own. But from 1945 onward, the technology of computing
attracted many of the world’s brightest and most creative minds.
From Eckert and Mauchly’s first ENIAC computer onward there
was a more or less continuous and self-conscious technical culture
of enthusiast programmers, people who built and played with
software for fun.

The Real Programmers typically came out of engineering or
physics backgrounds. They were often amateur-radio hobbyists.
They wore white socks and polyester shirts and ties and thick
glasses and coded in machine language and assembler and FOR-
TRAN and half a dozen ancient languages now forgotten.

From the end of World War II to the early 1970s, in the great days
of batch processing and the ‘‘big iron’’ mainframes, the Real Pro-
grammers were the dominant technical culture in computing. A
few pieces of revered hacker folklore date from this era, including
various lists of Murphy’s Laws and the mock-German ‘‘Blinken-
lights’’ poster that still graces many computer rooms.

Some people who grew up in the Real Programmer culture
remained active into the 1990s. Seymour Cray, designer of the
Cray line of supercomputers, was among the greatest. He is said
to have once toggled an entire operating system of his own design
into a computer of his own design through its front-panel

A Brief History of Hackerdom

3

22 December 2000 17:45

The Cathedral and the Bazaar

switches. In octal. Without an error. And it worked. Real Pro-
grammer macho supremo.

The ‘Real Programmer’ culture, though, was heavily associated
with batch (and especially batch scientific) computing. It was
eventually eclipsed by the rise of interactive computing, the univer-
sities, and the networks. These gave birth to another engineering
tradition that, eventually, would evolve into today’s open-source
hacker culture.

The Early Hackers

The beginnings of the hacker culture as we know it today can be
conveniently dated to 1961, the year MIT acquired the first
PDP-1. The Signals and Power Committee of MIT’s Tech Model
Railroad Club adopted the machine as their favorite tech-toy and
invented programming tools, slang, and an entire surrounding cul-
ture that is still recognizably with us today. These early years have
been examined in the first part of Steven Levy’s book Hackers,
Anchor/Doubleday 1984, ISBN 0-385-19195-2.

MIT’s computer culture seems to have been the first to adopt the
term ‘hacker’. The Tech Model Railroad Club’s hackers became
the nucleus of MIT’s Artificial Intelligence Laboratory, the world’s
leading center of AI research into the early 1980s. Their influence
was spread far wider after 1969, the first year of the ARPAnet.

The ARPAnet was the first transcontinental, high-speed computer
network. It was built by the Defense Department as an experiment
in digital communications, but grew to link together hundreds of
universities and defense contractors and research laboratories. It
enabled researchers everywhere to exchange information with
unprecedented speed and flexibility, giving a huge boost to collab-
orative work and tremendously increasing both the pace and
intensity of technological advance.

But the ARPAnet did something else as well. Its electronic high-
ways brought together hackers all over the U.S. in a critical mass;

4

22 December 2000 17:45

instead of remaining in isolated small groups each developing their
own ephemeral local cultures, they discovered (or re-invented)
themselves as a networked tribe.

The first intentional artifacts of the hacker culture—the first slang
lists, the first satires, the first self-conscious discussions of the
hacker ethic—all propagated on the ARPAnet in its early years. In
particular, the first version of the Jargon File
(http://www.tuxedo.org/jargon) developed as a cross-net collabo-
ration during 1973–1975. This slang dictionary became one of the
culture’s defining documents. It was eventually published as The
Hacker’s Dictionary in 1983; that first version is out of print, but
a revised and expanded version is The New Hacker’s Dictionary,
MIT Press, 3rd edition 1996, ISBN 0-262-68092-0 .

Hackerdom flowered at the universities connected to the net, espe-
cially (though not exclusively) in their computer science depart-
ments. MIT’s AI and LCS labs made it first among equals from the
late 1960s. But Stanford University’s Artificial Intelligence Labora-
tory (SAIL) and Carnegie-Mellon University (CMU) became
nearly yas important. All were thriving centers of computer sci-
ence and AI research. All attracted bright people who contributed
great things to the hacker culture, on both the technical and folk-
loric levels.

To understand what came later, though, we need to take another
look at the computers themselves, because the AI Lab’s rise and its
eventual fall were both driven by waves of change in computing
technology.

Since the days of the PDP-1, hackerdom’s fortunes had been
woven together with Digital Equipment Corporation’s PDP series
of minicomputers. DEC pioneered commercial interactive comput-
ing and time-sharing operating systems. Because their machines
were flexible, powerful, and relatively cheap for the era, lots of
universities bought them.

A Brief History of Hackerdom

5

22 December 2000 17:45

The Cathedral and the Bazaar

Cheap time-sharing was the medium the hacker culture grew in,
and for most of its lifespan the ARPAnet was primarily a network
of DEC machines. The most important of these was the PDP-10,
first released in 1967. The 10 remained hackerdom’s favorite
machine for almost fifteen years; TOPS-10 (DEC’s operating sys-
tem for the machine) and MACRO-10 (its assembler) are still
remembered with nostalgic fondness in a great deal of slang and
folklore.

MIT, though it used the same PDP-10s as everyone else, took a
slightly different path; it rejected DEC’s software for the PDP-10
entirely and built its own operating system, the fabled ITS.

ITS stood for ‘‘Incompatible Time-sharing System’’ which gives
one a pretty good fix on the MIT hackers’ attitude. They wanted it
their way. Fortunately for all, MIT’s people had the intelligence to
match their arrogance. ITS, quirky and eccentric and occasionally
buggy though it always was, hosted a brilliant series of technical
innovations and still arguably holds the record as the single time-
sharing system in longest continuous use.

ITS itself was written in assembler, but many ITS projects were
written in the AI language LISP. LISP was far more powerful and
flexible than any other language of its day; in fact, it is still a bet-
ter design than most languages of today, 25 years later. LISP freed
ITS’s hackers to think in unusual and creative ways. It was a
major factor in their successes, and remains one of hackerdom’s
favorite languages.

Many of the ITS culture’s technical creations are still alive today;
the EMACS program editor is perhaps the best-known. And much
of ITS’s folklore is still ‘live’ to hackers, as one can see in the
Jargon File (http://www.tuxedo.org/jargon).

SAIL and CMU weren’t asleep, either. Many of the cadre of hack-
ers that grew up around SAIL’s PDP-10 later became key figures in
the development of the personal computer and today’s window/
icon/mouse software interfaces. Meanwhile hackers at CMU were

6

22 December 2000 17:45

doing the work that would lead to the first practical large-scale
applications of expert systems and industrial robotics.

Another important node of the culture was XEROX PARC, the
famed Palo Alto Research Center. For more than a decade, from
the early 1970s into the mid-1980s, PARC yielded an astonishing
volume of groundbreaking hardware and software innovations.
The modern mice, windows, and icons style of software interface
was invented there. So were the laser printer and the local-area
network; and PARC’s series of D machines anticipated the power-
ful personal computers of the 1980s by a decade. Sadly, these
prophets were without honor in their own company; so much so
that it became a standard joke to describe PARC as a place char-
acterized by developing brilliant ideas for everyone else. Their
influence on hackerdom was pervasive.

The ARPAnet and the PDP-10 cultures grew in strength and vari-
ety throughout the 1970s. The facilities for electronic mailing lists
that had been used to foster cooperation among continent-wide
special-interest groups were increasingly also used for more social
and recreational purposes. DARPA deliberately turned a blind eye
to all the technically ‘unauthorized’ activity; it understood that the
extra overhead was a small price to pay for attracting an entire
generation of bright young people into the computing field.

Perhaps the best-known of the ‘social’ ARPAnet mailing lists was
the SF-LOVERS list for science-fiction fans; it is still very much
alive today, in fact, on the larger ‘Internet’ that ARPAnet evolved
into. But there were many others, pioneering a style of communi-
cation that would later be commercialized by for-profit time-shar-
ing services like CompuServe, GEnie, and Prodigy (and later still
dominated by AOL).

Your historian first became involved with the hacker culture in
1977 through the early ARPAnet and science-fiction fandom.
From then onward, I personally witnessed and participated in
many of the changes described here.

A Brief History of Hackerdom

7

22 December 2000 17:45

The Cathedral and the Bazaar

The Rise of Unix

Far from the bright lights of the ARPAnet, off in the wilds of New
Jersey, something else had been going on since 1969 that would
eventually overshadow the PDP-10 tradition. The year of
ARPAnet’s birth was also the year that a Bell Labs hacker named
Ken Thompson invented Unix.

Thompson had been involved with the development work on a
time-sharing OS called Multics, which shared common ancestry
with ITS. Multics was a test-bed for some important ideas about
how the complexity of an operating system could be hidden inside
it, invisible to the user, and even to most programmers. The idea
was to make using Multics from the outside (and programming
for it!) much simpler, so that more real work could get done.

Bell Labs pulled out of the project when Multics displayed signs of
bloating into an unusable white elephant (the system was later
marketed commercially by Honeywell but never became a suc-
cess). Ken Thompson missed the Multics environment, and began
to play at implementing a mixture of its ideas and some of his
own on a scavenged DEC PDP-7.

Another hacker named Dennis Ritchie invented a new language
called C for use under Thompson’s embryonic Unix. Like Unix, C
was designed to be pleasant, unconstraining, and flexible. Interest
in these tools spread at Bell Labs, and they got a boost in 1971
when Thompson and Ritchie won a bid to produce what we’d
now call an office automation system for internal use there. But
Thompson & Ritchie had their eye on a bigger prize.

Traditionally, operating systems had been written in tight assem-
bler to extract the absolute highest efficiency possible out of their
host machines. Thompson and Ritchie were among the first to
realize that hardware and compiler technology had become good
enough that an entire operating system could be written in C, and
by 1978 the whole environment had been successfully ported to
several machines of different types.

8

22 December 2000 17:45

This had never been done before, and the implications were enor-
mous. If Unix could present the same face, the same capabilities,
on machines of many different types, it could serve as a common
software environment for all of them. No longer would users have
to pay for complete new designs of software every time a machine
went obsolete. Hackers could carry around software toolkits
between different machines, rather than having to re-invent the
equivalents of fire and the wheel every time.

Besides portability, Unix and C had some other important
strengths. Both were constructed from a ‘‘Keep It Simple, Stupid’’
philosophy. A programmer could easily hold the entire logical
structure of C in his head (unlike most other languages before or
since) rather than needing to refer constantly to manuals; and
Unix was structured as a flexible toolkit of simple programs
designed to combine with each other in useful ways.

The combination proved to be adaptable to a very wide range of
computing tasks, including many completely unanticipated by the
designers. It spread very rapidly within AT&T, in spite of the lack
of any formal support program for it. By 1980 it had spread to a
large number of university and research computing sites, and
thousands of hackers considered it home.

The workhorse machines of the early Unix culture were the
PDP-11 and its descendant, the VAX. But because of Unix’s porta-
bility, it ran essentially unaltered on a wider range of machines
than one could find on the entire ARPAnet. And nobody used
assembler; C programs were readily portable among all these
machines.

Unix even had its own networking, of sorts—UUCP: low-speed
and unreliable, but cheap. Any two Unix machines could
exchange point-to-point electronic mail over ordinary phone lines;
this capability was built into the system, not an optional extra. In
1980 the first Usenet sites began exchanging broadcast news,
forming a gigantic distributed bulletin board that would quickly

A Brief History of Hackerdom

9

22 December 2000 17:45

The Cathedral and the Bazaar

grow bigger than ARPAnet. Unix sites began to form a network
nation of their own around Usenet.

A few Unix sites were on the ARPAnet themselves. The PDP-10
and Unix/Usenet cultures began to meet and mingle at the edges,
but they didn’t mix very well at first. The PDP-10 hackers tended
to consider the Unix crowd a bunch of upstarts, using tools that
looked ridiculously primitive when set against the baroque, lovely
complexities of LISP and ITS. ‘‘Stone knives and bearskins!’’ they
muttered.

And there was yet a third current flowing. The first personal com-
puter had been marketed in 1975; Apple was founded in 1977,
and advances came with almost unbelievable rapidity in the years
that followed. The potential of microcomputers was clear, and
attracted yet another generation of bright young hackers. Their
language was BASIC, so primitive that PDP-10 partisans and Unix
aficionados both considered it beneath contempt.

The End of Elder Day s

So matters stood in 1980: three cultures, overlapping at the edges
but clustered around very different technologies. The ARPAnet/
PDP-10 culture, wedded to LISP and MACRO and TOPS-10 and
ITS and SAIL. The Unix and C crowd with their PDP-11s and
VAXen and pokey telephone connections. And an anarchic horde
of early microcomputer enthusiasts bent on taking computer
power to the people.

Among these, the ITS culture could still claim pride of place. But
stormclouds were gathering over the Lab. The PDP-10 technology
ITS depended on was aging, and the Lab itself was split into fac-
tions by the first attempts to commercialize artificial intelligence.
Some of the Lab’s (and SAIL’s and CMU’s) best were lured away
to high-paying jobs at startup companies.

The death blow came in 1983, when DEC cancelled its Jupiter fol-
low-on to the PDP-10 in order to concentrate on the PDP-11 and

10

22 December 2000 17:45

VAX lines. ITS no longer had a future. Because it wasn’t portable,
it was more effort than anyone could afford to move ITS to new
hardware. The Berkeley variant of Unix running on a VAX
became the hacking system par excellence, and anyone with an eye
on the future could see that microcomputers were growing in
power so rapidly that they were likely to sweep all before them.

It’s around this time that Levy wrote Hackers. One of his prime
informants was Richard M. Stallman (inventor of Emacs), a lead-
ing figure at the Lab and its most fanatical holdout against the
commercialization of Lab technology.

Stallman (who is usually known by his initials and login name,
RMS) went on to form the Free Software Foundation and dedicate
himself to producing high-quality free software. Levy eulogized
him as ‘‘the last true hacker’’, a description which happily proved
incorrect.

Stallman’s grandest scheme neatly epitomized the transition hack-
erdom underwent in the early eighties—in 1982 he began the con-
struction of an entire clone of Unix, written in C and available for
free. His project was known as the GNU (Gnu’s Not Unix) operat-
ing system, in a kind of recursive acronym. GNU quickly became
a major focus for hacker activity. Thus, the spirit and tradition of
ITS was preserved as an important part of the newer, Unix and
VAX-centered hacker culture.

Indeed, for more than a decade after its founding RMS’s Free Soft-
ware Foundation would largely define the public ideology of the
hacker culture, and Stallman himself would be the only credible
claimant to leadership of the tribe.

It was also around 1982–83 that microchip and local-area net-
work technology began to have a serious impact on hackerdom.
Ethernet and the Motorola 68000 microchip made a potentially
potent combination, and several different startups had been
formed to build the first generation of what we now call work-
stations.

A Brief History of Hackerdom

11

22 December 2000 17:45

The Cathedral and the Bazaar

In 1982, a group of Unix hackers from Stanford and Berkeley
founded Sun Microsystems on the belief that Unix running on rel-
atively inexpensive 68000-based hardware would prove a winning
combination for a wide variety of applications. They were right,
and their vision set the pattern for an entire industry. While still
priced out of reach of most individuals, workstations were cheap
for corporations and universities; networks of them (one to a user)
rapidly replaced the older VAXes and other time-sharing systems.

The Proprietary-Unix Era

By 1984, when Ma Bell divested and Unix became a supported
AT&T product for the first time, the most important fault line in
hackerdom was between a relatively cohesive ‘network nation’
centered around the Internet and Usenet (and mostly using mini-
computer- or workstation-class machines running Unix), and a
vast disconnected hinterland of microcomputer enthusiasts.

It was also around this time that serious cracking episodes were
first covered in the mainstream press—and journalists began to
misapply the term ‘‘hacker’’ to refer to computer vandals, an abuse
which sadly continues to this day.

The workstation-class machines built by Sun and others opened
up new worlds for hackers. They were built to do high-perfor-
mance graphics and pass around shared data over a network. Dur-
ing the 1980s hackerdom was preoccupied by the software and
tool-building challenges of getting the most use out of these fea-
tures. Berkeley Unix developed built-in support for the ARPAnet
protocols, which offered a solution to the networking problems
associated with UUCP’s slow point-to-point links and encouraged
further growth of the Internet.

There were several attempts to tame workstation graphics. The
one that prevailed was the X Window System, developed at MIT
with contributions from hundreds of individuals at dozens of com-
panies. A critical factor in its success was that the X developers
were willing to give the sources away for free in accordance with

12

22 December 2000 17:45

the hacker ethic, and able to distribute them over the Internet. X’s
victory over proprietary graphics systems (including one offered
by Sun itself) was an important harbinger of changes that, a few
years later, would profoundly affect Unix as a whole.

There was a bit of factional spleen still vented occasionally in the
ITS/Unix rivalry (mostly from the ex-ITSers’ side). But the last ITS
machine shut down for good in 1990; the zealots no longer had a
place to stand and mostly assimilated to the Unix culture with var-
ious degrees of grumbling.

Within networked hackerdom itself, the big rivalry of the 1980s
was between fans of Berkeley Unix and the AT&T versions. Occa-
sionally you can still find copies of a poster from that period,
showing a cartoony X-wing fighter out of the ‘‘Star Wars’’ movies
streaking away from an exploding Death Star patterned on the
AT&T logo. Berkeley hackers liked to see themselves as rebels
against soulless corporate empires. AT&T Unix never caught up
with BSD/Sun in the marketplace, but it won the standards wars.
By 1990, AT&T and BSD versions were becoming harder to tell
apart, having adopted many of each other’s innovations.

As the 1990s opened, the workstation technology of the previous
decade was beginning to look distinctly threatened by newer, low-
cost and high-performance personal computers based on the Intel
386 chip and its descendants. For the first time, individual hackers
could afford to have home machines comparable in power and
storage capacity to the minicomputers of ten years earlier—Unix
engines capable of supporting a full development environment and
talking to the Internet.

The MS-DOS world remained blissfully ignorant of all this.
Though those early microcomputer enthusiasts quickly expanded
to constitute a population of DOS and Mac hackers orders of
magnitude larger than that of the network nation culture, they
never became a self-aware of their culture. The pace of change
was so fast that fifty different technical cultures grew and died as
rapidly as mayflies, never achieving quite the stability necessary to

A Brief History of Hackerdom

13

22 December 2000 17:45

The Cathedral and the Bazaar

develop a common tradition of jargon, folklore, and mythic his-
tory. The absence of a really pervasive network comparable to
UUCP or Internet prevented them from becoming a network
nation themselves.

Widespread access to commercial online services like CompuServe
and GEnie was beginning to take hold, but the fact that non-Unix
operating systems don’t come bundled with development tools
meant that very little source was passed over them. Thus, no tradi-
tion of collaborative hacking developed.

The mainstream of hackerdom, (dis)organized around the Internet
and by now largely identified with the Unix technical culture,
didn’t care about the commercial services. These hackers wanted
better tools and more Internet, and cheap 32-bit PCs promised to
put both in everyone’s reach.

But where was the software? Commercial Unixes remained expen-
sive, in the multiple-kilobuck range. In the early 1990s several
companies made a go at selling AT&T or BSD Unix ports for PC-
class machines. Success was elusive, prices didn’t come down
much, and (worst of all) you didn’t get modifiable and redis-
tributable sources with your operating system. The traditional
software-business model wasn’t giving hackers what they wanted.

Neither was the Free Software Foundation. The development of
HURD, RMS’s long-promised free Unix kernel for hackers, got
stalled for years and failed to produce anything like a usable ker-
nel until 1996 (though by 1990 FSF supplied almost all the other
difficult parts of a Unix-like operating system).

Worse, by the early 1990s it was becoming clear that ten years of
effort to commercialize proprietary Unix was ending in failure.
Unix’s promise of cross-platform portability got lost in bickering
among half a dozen proprietary Unix versions. The proprietary-
Unix players proved so ponderous, so blind, and so inept at mar-
keting that Microsoft was able to grab away a large part of their

14

22 December 2000 17:45

market with the shockingly inferior technology of its Windows
operating system.

In early 1993, a hostile observer might have had grounds for
thinking that the Unix story was almost played out, and with it
the fortunes of the hacker tribe. And there was no shortage of hos-
tile observers in the computer trade press, many of whom had
been ritually predicting the imminent death of Unix at six-month
intervals ever since the late 1970s.

In those days it was conventional wisdom that the era of individ-
ual techno-heroism was over, that the software industry and the
nascent Internet would increasingly be dominated by colossi like
Microsoft. The first generation of Unix hackers seemed to be get-
ting old and tired (Berkeley’s Computer Science Research Group
ran out of steam and would lose its funding in 1994). It was a
depressing time.

Fortunately, there had been things going on out of sight of the
trade press, and out of sight even of most hackers, that would pro-
duce startlingly positive developments in later 1993 and 1994.
Eventually, these would take the culture in a whole new direction
and to undreamed-of successes.

The Early Free Unixes

Into the gap left by the Free Software Foundation’s uncompleted
HURD had stepped a Helsinki University student named Linus
Torvalds. In 1991 he began developing a free Unix kernel for 386
machines using the Free Software Foundation’s toolkit. His initial,
rapid success attracted many Internet hackers to help him develop
Linux, a full-featured Unix with entirely free and redistributable
sources.

Linux was not without competitors. In 1991, contemporaneously
with Linus Torvalds’s early experiments, William and Lynne Jolitz
were experimentally porting the BSD Unix sources to the 386.
Most observers comparing BSD technology with Linus’s crude

A Brief History of Hackerdom

15

22 December 2000 17:45

The Cathedral and the Bazaar

early efforts expected that BSD ports would become the most
important free Unixes on the PC.

The most important feature of Linux, however, was not technical
but sociological. Until the Linux development, everyone believed
that any software as complex as an operating system had to be
developed in a carefully coordinated way by a relatively small,
tightly-knit group of people. This model was and still is typical of
both commercial software and the great freeware cathedrals built
by the Free Software Foundation in the 1980s; also of the
freeBSD/netBSD/OpenBSD projects that spun off from the Jolitzes’
original 386BSD port.

Linux evolved in a completely different way. From nearly the
beginning, it was rather casually hacked on by huge numbers of
volunteers coordinating only through the Internet. Quality was
maintained not by rigid standards or autocracy but by the naively
simple strategy of releasing every week and getting feedback from
hundreds of users within days, creating a sort of rapid Darwinian
selection on the mutations introduced by developers. To the
amazement of almost everyone, this worked quite well.

By late 1993 Linux could compete on stability and reliability with
many commercial Unixes, and hosted vastly more software. It was
even beginning to attract ports of commercial applications soft-
ware. One indirect effect of this development was to kill off most
of the smaller proprietary Unix vendors—without developers and
hackers to sell to, they folded. One of the few survivors, BSDI
(Berkeley Systems Design, Incorporated), flourished by offering
full sources with its BSD-based Unix and cultivating close ties with
the hacker community.

These developments were not much remarked on at the time
within the hacker culture, and not at all outside it. The hacker cul-
ture, defying repeated predictions of its demise, was just beginning
to remake the commercial-software world in its own image. It
would be five more years, however, before this trend became
obvious.

16

22 December 2000 17:45

The Great Web Explosion

The early growth of Linux synergized with another phenomenon:
the public discovery of the Internet. The early 1990s also saw the
beginnings of a flourishing Internet-provider industry, selling con-
nectivity to the public for a few dollars a month. Following the
invention of the World Wide Web, the Internet’s already rapid
growth accelerated to a breakneck pace.

By 1994, the year Berkeley’s Unix development group formally
shut down, several different free Unix versions (Linux and the
descendants of 386BSD) served as the major focal points of hack-
ing activity. Linux was being distributed commercially on CD-
ROM and selling like hotcakes. By the end of 1995, major com-
puter companies were beginning to take out glossy advertisements
celebrating the Internet-friendliness of their software and hard-
ware!

In the late 1990s the central activities of hackerdom became Linux
development and the mainstreaming of the Internet. The World
Wide Web has at last made the Internet into a mass medium, and
many of the hackers of the 1980s and early 1990s launched Inter-
net Service Providers selling or giving access to the masses.

The mainstreaming of the Internet even brought the hacker culture
the beginnings of respectability and political clout. In 1994 and
1995 hacker activism scuppered the Clipper proposal which
would have put strong encryption under government control. In
1996 hackers mobilized a broad coalition to defeat the misnamed
‘‘Communications Decency Act’’ (CDA) and prevent censorship of
the Internet.

With the CDA victory, we pass out of history into current events.
We also pass into a period in which your historian (rather to his
own surprise) became an actor rather than just an observer. This
narrative will continue in Revenge of the Hackers.

A Brief History of Hackerdom

17

22 December 2000 17:45

The Cathedral and the Bazaar

✦ ✦ ✦

I anatomize a successful open-source project, fetchmail,

that was run as a deliberate test of the surprising theories

about software engineering suggested by the history of

Linux. I discuss these theories in terms of two fundamen-

tally different development styles, the ‘cathedral’ model of

most of the commercial world versus the ‘bazaar’ model

of the Linux world. I show that these models derive from

opposing assumptions about the nature of the software-

debugging task. I then make a sustained argument from

the Linux experience for the proposition that ‘‘Gi ven

enough eyeballs, all bugs are shallow’’, suggest productive

analogies with other self-correcting systems of selfish

agents, and conclude with some exploration of the impli-

cations of this insight for the future of software.

19

22 December 2000 18:18

22 December 2000 18:18

The Cathedral and the Bazaar

Linux is subversive. Who would have thought even five years ago
(1991) that a world-class operating system could coalesce as if by
magic out of part-time hacking by several thousand developers
scattered all over the planet, connected only by the tenuous
strands of the Internet?

Certainly not I. By the time Linux swam onto my radar screen in
early 1993, I had already been involved in Unix and open-source
development for 10 years. I was one of the first GNU contributors
in the mid-1980s. I had released a good deal of open-source soft-
ware onto the Net, developing or co-developing several programs
(nethack, Emacs’s VC and GUD modes, xlife, and others) that are
still in wide use today. I thought I knew how it was done.

Linux overturned much of what I thought I knew. I had been
preaching the Unix gospel of small tools, rapid prototyping, and
evolutionary programming for years. But I also believed there was
a certain critical complexity above which a more centralized, a
priori approach was required. I believed that the most important
software (operating systems and really large tools like the Emacs
programming editor) needed to be built like cathedrals, carefully
crafted by individual wizards or small bands of mages working in
splendid isolation, with no beta to be released before its time.

Linus Torvalds’s style of development—release early and often,
delegate everything you can, be open to the point of promiscu-
ity — came as a surprise. No quiet, reverent cathedral-building
here — rather, the Linux community seemed to resemble a great
babbling bazaar of differing agendas and approaches (aptly sym-
bolized by the Linux archive sites, which would take submissions

The Cathedral and the Bazaar

21

22 December 2000 18:18

The Cathedral and the Bazaar

from anyone) out of which a coherent and stable system could
seemingly emerge only by a succession of miracles.

The fact that this bazaar style seemed to work, and work well,
came as a distinct shock. As I learned my way around, I worked
hard not just at individual projects, but also at trying to under-
stand why the Linux world not only didn’t fly apart in confusion
but seemed to go from strength to strength at a speed barely imag-
inable to cathedral-builders.

By mid-1996 I thought I was beginning to understand. Chance
handed me a perfect way to test my theory, in the form of an
open-source project that I could consciously try to run in the
bazaar style. So I did—and it was a significant success.

This is the story of that project. I’ll use it to propose some apho-
risms about effective open-source development. Not all of these
are things I first learned in the Linux world, but we’ll see how the
Linux world gives them particular point. If I’m correct, they’ll
help you understand exactly what it is that makes the Linux com-
munity such a fountain of good software—and, perhaps, they will
help you become more productive yourself.

The Mail Must Get Through

Since 1993 I’d been running the technical side of a small free-
access Internet service provider called Chester County InterLink
(CCIL) in West Chester, Pennsylvania. I co-founded CCIL and
wrote our unique multiuser bulletin-board software—you can
check it out by telnetting to locke.ccil.org. Today it supports
almost 3000 users on 30 lines. The job allowed me 24-hour-a-day
access to the net through CCIL’s 56K line—in fact, the job practi-
cally demanded it!

22

22 December 2000 18:18

I had gotten quite used to instant Internet email. I found having to
periodically telnet over to locke to check my mail annoying. What
I wanted was for my mail to be delivered on snark (my home sys-
tem) so that I would be notified when it arrived and could handle
it using all my local tools.

The Internet’s native mail forwarding protocol, SMTP (Simple
Mail Transfer Protocol), wouldn’t suit, because it works best when
machines are connected full-time, while my personal machine isn’t
always on the Internet and doesn’t have a static IP address. What I
needed was a program that would reach out over my intermittent
dialup connection and pull across my mail to be delivered locally.
I knew such things existed, and that most of them used a simple
application protocol called POP (Post Office Protocol). POP is
now widely supported by most common mail clients, but at the
time, it wasn’t built in to the mail reader I was using.

I needed a POP3 client. So I went out on the Internet and found
one. Actually, I found three or four. I used one of them for a while,
but it was missing what seemed an obvious feature, the ability to
hack the addresses on fetched mail so replies would work
properly.

The problem was this: suppose someone named joe on locke sent
me mail. If I fetched the mail to snark and then tried to reply to it,
my mailer would cheerfully try to ship it to a nonexistent joe on
snark. Hand-editing reply addresses to tack on @ccil.org quickly
got to be a serious pain.

This was clearly something the computer ought to be doing for
me. But none of the existing POP clients knew how! And this
brings us to the first lesson:

1. Every good work of software starts by scratch-
ing a developer’s personal itch.

Perhaps this should have been obvious (it’s long been proverbial
that ‘‘Necessity is the mother of invention’’), but too often soft-
ware developers spend their days grinding away for pay at

The Cathedral and the Bazaar

23

22 December 2000 18:18

The Cathedral and the Bazaar

programs they neither need nor love. But not in the Linux
world — which may explain why the average quality of software
originated in the Linux community is so high.

So, did I immediately launch into a furious whirl of coding up a
brand-new POP3 client to compete with the existing ones? Not on
your life! I looked carefully at the POP utilities I had in hand, ask-
ing myself ‘‘Which one is closest to what I want?’’ Because:

2. Good programmers know what to write. Great
ones know what to rewrite (and reuse).

While I don’t claim to be a great programmer, I try to imitate one.
An important trait of the great ones is constructive laziness. They
know that you get an A not for effort but for results, and that it’s
almost always easier to start from a good partial solution than
from nothing at all.

Linus Torvalds (http://www.tuxedo.org/ ̃ esr/faqs/linus), for exam-
ple, didn’t actually try to write Linux from scratch. Instead, he
started by reusing code and ideas from Minix, a tiny Unix-like
operating system for PC clones. Eventually all the Minix code
went away or was completely rewritten—but while it was there, it
provided scaffolding for the infant that would eventually become
Linux.

In the same spirit, I went looking for an existing POP utility that
was reasonably well coded, to use as a development base.

The source-sharing tradition of the Unix world has always been
friendly to code reuse (this is why the GNU project chose Unix as
a base OS, in spite of serious reservations about the OS itself). The
Linux world has taken this tradition nearly to its technological
limit; it has terabytes of open sources generally available. So
spending time looking for someone else’s almost-good-enough is
more likely to give you good results in the Linux world than any-
where else.

And it did for me. With those I’d found earlier, my second search
made up a total of nine candidates—fetchpop, PopTart, get-mail,

24

22 December 2000 18:18

gwpop, pimp, pop-perl, popc, popmail and upop. The one I first
settled on was ‘fetchpop’ by Seung-Hong Oh. I put my header-
rewrite feature in it, and made various other improvements that
the author accepted into his 1.9 release.

Just a few weeks later, though, I stumbled across the code for
popclient by Carl Harris, and found I had a problem. Though
fetchpop had some good original ideas in it (such as its back-
ground-daemon mode), it could only handle POP3 and was rather
amateurishly coded (Seung-Hong was at that time a bright but
inexperienced programmer, and both traits showed). Carl’s code
was better, quite professional and solid, but his program lacked
several important and rather tricky-to-implement fetchpop fea-
tures (including those I’d coded myself).

Stay or switch? If I switched, I’d be throwing away the coding I’d
already done in exchange for a better development base.

A practical motive to switch was the presence of multiple-protocol
support. POP3 is the most commonly used of the post-office server
protocols, but not the only one. Fetchpop and the other competi-
tion didn’t do POP2, RPOP, or APOP, and I was already having
vague thoughts of perhaps adding IMAP (Internet Message Access
Protocol, the most recently designed and most powerful post-
office protocol, http://www.imap.org) just for fun.

But I had a more theoretical reason to think switching might be as
good an idea as well, something I learned long before Linux.

3. ‘‘Plan to throw one awa y; you will, anyhow. ’ ’
(Fred Brooks, The Mythical Man-Month, Chapter 11)

Or, to put it another way, you often don’t really understand the
problem until after the first time you implement a solution. The
second time, maybe you know enough to do it right. So if you
want to get it right, be ready to start over at least once.1

Well (I told myself) the changes to fetchpop had been my first try.
So I switched.

The Cathedral and the Bazaar

25

22 December 2000 18:18

The Cathedral and the Bazaar

After I sent my first set of popclient patches to Carl Harris on 25
June 1996, I found out that he had basically lost interest in
popclient some time before. The code was a bit dusty, with minor
bugs hanging out. I had many changes to make, and we quickly
agreed that the logical thing for me to do was take over the pro-
gram.

Without my actually noticing, the project had escalated. No
longer was I just contemplating minor patches to an existing POP
client. I took on maintaining an entire one, and there were ideas
bubbling in my head that I knew would probably lead to major
changes.

In a software culture that encourages code-sharing, this is a natu-
ral way for a project to evolve. I was acting out this principle:

4. If you have the right attitude, interesting prob-
lems will find you.

But Carl Harris’s attitude was even more important. He under-
stood that:

5. When you lose interest in a program, your last
duty to it is to hand it off to a competent suc-
cessor.

Without ever having to discuss it, Carl and I knew we had a com-
mon goal of having the best solution out there. The only question
for either of us was whether I could establish that I was a safe pair
of hands. Once I did that, he acted with grace and dispatch. I hope
I will do as well when it comes my turn.

The Importance of Having Users

And so I inherited popclient. Just as importantly, I inherited
popclient’s user base. Users are wonderful things to have, and not
just because they demonstrate that you’re serving a need, that
you’ve done something right. Properly cultivated, they can become
co-developers.

26

22 December 2000 18:18

Another strength of the Unix tradition, one that Linux pushes to a
happy extreme, is that a lot of users are hackers too. Because
source code is available, they can be effective hackers. This can be
tremendously useful for shortening debugging time. Given a bit of
encouragement, your users will diagnose problems, suggest fixes,
and help improve the code far more quickly than you could
unaided.

6. Treating your users as co-developers is your
least-hassle route to rapid code improvement
and effective debugging.

The power of this effect is easy to underestimate. In fact, pretty
well all of us in the open-source world drastically underestimated
how well it would scale up with number of users and against sys-
tem complexity, until Linus Torvalds showed us differently.

In fact, I think Linus’s cleverest and most consequential hack was
not the construction of the Linux kernel itself, but rather his
invention of the Linux development model. When I expressed this
opinion in his presence once, he smiled and quietly repeated some-
thing he has often said: ‘‘I’m basically a very lazy person who likes
to get credit for things other people actually do.’’ Lazy like a fox.
Or, as Robert Heinlein famously wrote of one of his characters,
too lazy to fail.

In retrospect, one precedent for the methods and success of Linux
can be seen in the development of the GNU Emacs Lisp library
and Lisp code archives. In contrast to the cathedral-building style
of the Emacs C core and most other GNU tools, the evolution of
the Lisp code pool was fluid and very user-driven. Ideas and pro-
totype modes were often rewritten three or four times before
reaching a stable final form. And loosely-coupled collaborations
enabled by the Internet, a la Linux, were frequent.

Indeed, my own most successful single hack previous to fetchmail
was probably Emacs VC (version control) mode, a Linux-like col-
laboration by email with three other people, only one of whom
(Richard Stallman, the author of Emacs and founder of the Free

The Cathedral and the Bazaar

27

22 December 2000 18:18

The Cathedral and the Bazaar

Software Foundation, (http://www.fsf.org") I have met to this day.
It was a front-end for SCCS, RCS, and later CVS from within
Emacs that offered ‘‘one-touch’’ version control operations. It
evolved from a tiny, crude sccs.el mode somebody else had writ-
ten. And the development of VC succeeded because, unlike Emacs
itself, Emacs Lisp code could go through release/test/improve gen-
erations very quickly.

The Emacs story is not unique. There have been other software
products with a two-level architecture and a two-tier user commu-
nity that combined a cathedral-mode core and a bazaar-mode
toolbox. One such is MATLAB, a commercial data-analysis and
visualization tool. Users of MATLAB and other products with a
similar structure invariably report that the action, the ferment, the
innovation mostly takes place in the open part of the tool where a
large and varied community can tinker with it.

Release Early, Release Often

Early and frequent releases are a critical part of the Linux devel-
opment model. Most developers (including me) used to believe
this was bad policy for larger than trivial projects, because early
versions are almost by definition buggy versions and you don’t
want to wear out the patience of your users.

This belief reinforced the general commitment to a cathedral-
building style of development. If the overriding objective was for
users to see as few bugs as possible, why then you’d only release a
version every six months (or less often), and work like a dog on
debugging between releases. The Emacs C core was developed this
way. The Lisp library, in effect, was not—because there were
active Lisp archives outside the FSF’s control, where you could go
to find new and development code versions independently of
Emacs’s release cycle.2

The most important of these, the Ohio State Emacs Lisp archive,
anticipated the spirit and many of the features of today’s big
Linux archives. But few of us really thought very hard about what

28

22 December 2000 18:18

we were doing, or about what the very existence of that archive
suggested about problems in the FSF’s cathedral-building develop-
ment model. I made one serious attempt around 1992 to get a lot
of the Ohio code formally merged into the official Emacs Lisp
library. I ran into political trouble and was largely unsuccessful.

But by a year later, as Linux became widely visible, it was clear
that something different and much healthier was going on there.
Linus’s open development policy was the very opposite of cathe-
dral-building. Linux’s Internet archives were burgeoning, multiple
distributions were being floated. And all of this was driven by an
unheard-of frequency of core system releases.

Linus was treating his users as co-developers in the most effective
possible way:

7. Release early. Release often. And listen to your
customers.

Linus’s innovation wasn’t so much in doing quick-turnaround
releases incorporating lots of user feedback (something like this
had been Unix-world tradition for a long time), but in scaling it
up to a level of intensity that matched the complexity of what he
was developing. In those early times (around 1991) it wasn’t
unknown for him to release a new kernel more than once a day!
Because he cultivated his base of co-developers and leveraged the
Internet for collaboration harder than anyone else, this worked.

But how did it work? And was it something I could duplicate, or
did it rely on some unique genius of Linus Torvalds?

I didn’t think so. Granted, Linus is a damn fine hacker. How many
of us could engineer an entire production-quality operating system
kernel from scratch? But Linux didn’t represent any awesome con-
ceptual leap forward. Linus is not (or at least, not yet) an innova-
tive genius of design in the way that, say, Richard Stallman or
James Gosling (of NeWS and Java) are. Rather, Linus seems to me
to be a genius of engineering and implementation, with a sixth
sense for avoiding bugs and development dead-ends and a true

The Cathedral and the Bazaar

29

22 December 2000 18:18

The Cathedral and the Bazaar

knack for finding the minimum-effort path from point A to point
B. Indeed, the whole design of Linux breathes this quality and mir-
rors Linus’s essentially conservative and simplifying design
approach.

So, if rapid releases and leveraging the Internet medium to the hilt
were not accidents but integral parts of Linus’s engineering-genius
insight into the minimum-effort path, what was he maximizing?
What was he cranking out of the machinery?

Put that way, the question answers itself. Linus was keeping his
hacker/users constantly stimulated and rewarded—stimulated by
the prospect of having an ego-satisfying piece of the action,
rewarded by the sight of constant (even daily) improvement in
their work.

Linus was directly aiming to maximize the number of person-
hours thrown at debugging and development, even at the possible
cost of instability in the code and user-base burnout if any serious
bug proved intractable. Linus was behaving as though he believed
something like this:

8. Given a large enough beta-tester and co-devel-
oper base, almost every problem will be charac-
terized quickly and the fix obvious to someone.

Or, less formally, ‘‘Given enough eyeballs, all bugs are shallow.’’ I
dub this: ‘‘Linus’s Law’’.

My original formulation was that every problem ‘‘will be transpar-
ent to somebody’’. Linus demurred that the person who under-
stands and fixes the problem is not necessarily or even usually the
person who first characterizes it. ‘‘Somebody finds the problem,’’
he says, ‘‘and somebody else understands it. And I’ll go on record
as saying that finding it is the bigger challenge.’’ That correction is
important; we’ll see how in the next section, when we examine the
practice of debugging in more detail. But the key point is that both
parts of the process (finding and fixing) tend to happen rapidly.

30

22 December 2000 18:18

In Linus’s Law, I think, lies the core difference underlying the
cathedral-builder and bazaar styles. In the cathedral-builder view
of programming, bugs and development problems are tricky, insid-
ious, deep phenomena. It takes months of scrutiny by a dedicated
few to develop confidence that you’ve winkled them all out. Thus
the long release intervals, and the inevitable disappointment when
long-awaited releases are not perfect.

In the bazaar view, on the other hand, you assume that bugs are
generally shallow phenomena—or, at least, that they turn shallow
pretty quickly when exposed to a thousand eager co-developers
pounding on every single new release. Accordingly you release
often in order to get more corrections, and as a beneficial side
effect you have less to lose if an occasional botch gets out the
door.

And that’s it. That’s enough. If ‘‘Linus’s Law’’ is false, then any
system as complex as the Linux kernel, being hacked over by as
many hands as that kernel was, should at some point have col-
lapsed under the weight of unforseen bad interactions and undis-
covered ‘‘deep’’ bugs. If it’s true, on the other hand, it is sufficient
to explain Linux’s relative lack of bugginess and its continuous
uptimes spanning months or even years.

Maybe it shouldn’t have been such a surprise, at that. Sociologists
years ago discovered that the averaged opinion of a mass of
equally expert (or equally ignorant) observers is quite a bit more
reliable a predictor than the opinion of a single randomly chosen
observer. They called this the Delphi effect. It appears that what
Linus has shown is that this applies even to debugging an operat-
ing system—that the Delphi effect can tame development com-
plexity even at the complexity level of an OS kernel.3

One special feature of the Linux situation that clearly helps along
the Delphi effect is the fact that the contributors for any given
project are self-selected. An early respondent pointed out that con-
tributions are received not from a random sample, but from peo-
ple who are interested enough to use the software, learn about

The Cathedral and the Bazaar

31

22 December 2000 18:18

The Cathedral and the Bazaar

how it works, attempt to find solutions to problems they
encounter, and actually produce an apparently reasonable fix.
Anyone who passes all these filters is highly likely to have some-
thing useful to contribute.

Linus’s Law can be rephrased as ‘‘Debugging is parallelizable’’.
Although debugging requires debuggers to communicate with
some coordinating developer, it doesn’t require significant coordi-
nation between debuggers. Thus it doesn’t fall prey to the same
quadratic complexity and management costs that make adding
developers problematic.

In practice, the theoretical loss of efficiency due to duplication of
work by debuggers almost never seems to be an issue in the Linux
world. One effect of a ‘‘release early and often’’ policy is to mini-
mize such duplication by propagating fed-back fixes quickly.4

Brooks (the author of The Mythical Man-Month) even made an
off-hand observation related to Jeff’s: ‘‘The total cost of maintain-
ing a widely used program is typically 40 percent or more of the
cost of developing it. Surprisingly this cost is strongly affected by
the number of users. More users find more bugs.’’ [Emphasis
added.]

More users find more bugs because adding more users adds more
different ways of stressing the program. This effect is amplified
when the users are co-developers. Each one approaches the task of
bug characterization with a slightly different perceptual set and
analytical toolkit, a different angle on the problem. The Delphi
Effect seems to work precisely because of this variation. In the
specific context of debugging, the variation also tends to reduce
duplication of effort.

So adding more beta-testers may not reduce the complexity of the
current ‘‘deepest’’ bug from the developer’s point of view, but it
increases the probability that someone’s toolkit will be matched to
the problem in such a way that the bug is shallow to that person.

32

22 December 2000 18:18

Linus coppers his bets, too. In case there are serious bugs, Linux
kernel version are numbered in such a way that potential users can
make a choice either to run the last version designated ‘‘stable’’ or
to ride the cutting edge and risk bugs in order to get new features.
This tactic is not yet systematically imitated by most Linux hack-
ers, but perhaps it should be; the fact that either choice is available
makes both more attractive.5

Many Eyeballs Tame Complexity

It’s one thing to observe in the large that the bazaar style greatly
accelerates debugging and code evolution. It’s another to under-
stand exactly how and why it does so at the micro-level of day-to-
day developer and tester behavior. In this section (written three
years after the original paper, using insights by developers who
read it and re-examined their own behavior) we’ll take a hard
look at the actual mechanisms. Non-technically inclined readers
can safely skip to the next section.

One key to understanding is to realize exactly why it is that the
kind of bug report non–source-aware users normally turn in tends
not to be very useful. Non–source-aware users tend to report only
surface symptoms; they take their environment for granted, so
they (a) omit critical background data, and (b) seldom include a
reliable recipe for reproducing the bug.

The underlying problem here is a mismatch between the tester’s
and the developer’s mental models of the program; the tester, on
the outside looking in, and the developer on the inside looking
out. In closed-source development they’re both stuck in these
roles, and tend to talk past each other and find each other deeply
frustrating.

Open-source development breaks this bind, making it far easier
for tester and developer to develop a shared representation
grounded in the actual source code and to communicate effectively
about it. Practically, there is a huge difference in leverage for the
developer between the kind of bug report that just reports

The Cathedral and the Bazaar

33

22 December 2000 18:18

The Cathedral and the Bazaar

externally visible symptoms and the kind that hooks directly to
the developer’s source-code–based mental representation of the
program.

Most bugs, most of the time, are easily nailed given even an
incomplete but suggestive characterization of their error condi-
tions at source-code level. When someone among your beta-testers
can point out, “there’s a boundary problem in line nnn”, or even
just “under conditions X, Y, and Z, this variable rolls over”, a
quick look at the offending code often suffices to pin down the
exact mode of failure and generate a fix.

Thus, source-code awareness by both parties greatly enhances
both good communication and the synergy between what a beta-
tester reports and what the core developer(s) knows. In turn, this
means that the core developers’ time tends to be well conserved,
even with many collaborators.

Another characteristic of the open-source method that conserves
developer time is the communication structure of typical open-
source projects. Earlier I used the term “core developer”; this
reflects a distinction between the project core (typically quite
small; a single core developer is common, and one to three is typi-
cal) and the project halo of beta-testers and available contributors
(which often numbers in the hundreds).

The fundamental problem that traditional software-development
organization addresses is Brooks’s Law: ‘‘Adding more program-
mers to a late project makes it later.’’ More generally, Brooks’s
Law predicts that the complexity and communication costs of a
project rise with the square of the number of developers, while
work done only rises linearly.

Brooks’s Law is founded on experience that bugs tend strongly to
cluster at the interfaces between code written by different people,
and that communications/coordination overhead on a project
tends to rise with the number of interfaces between human beings.
Thus, problems scale with the number of communications paths

34

22 December 2000 18:18

between developers, which scales as the square of the number of
developers (more precisely, according to the formula N*(N–1)/2
where N is the number of developers).

The Brooks’s Law analysis (and the resulting fear of large numbers
in development groups) rests on a hidden assummption: that the
communications structure of the project is necessarily a complete
graph, that everybody talks to everybody else. But on open-source
projects, the halo developers work on what are in effect separable
parallel subtasks and interact with each other very little; code
changes and bug reports stream through the core group, and only
within that small core group do we pay the full Brooksian
overhead.6

There are are still more reasons that source-code–level bug report-
ing tends to be very efficient. They center around the fact that a
single error can often have multiple possible symptoms, manifest-
ing differently depending on details of the user’s usage pattern and
environment. Such errors tend to be exactly the sort of complex
and subtle bugs (such as dynamic-memory-management errors or
nondeterministic interrupt-window artifacts) that are hardest to
reproduce at will or to pin down by static analysis, and which do
the most to create long-term problems in software.

A tester who sends in a tentative source-code–level characteriza-
tion of such a multi-symptom bug (e.g., “It looks to me like there’s
a window in the signal handling near line 1250” or “Where are
you zeroing that buffer?”) may give a developer, otherwise too
close to the code to see it, the critical clue to a half-dozen dis-
parate symptoms. In cases like this, it may be hard or even impos-
sible to know which externally visible misbehaviour was caused
by precisely which bug—but with frequent releases, it’s unneces-
sary to know. Other collaborators will be likely to find out quickly
whether their bug has been fixed or not. In many cases, source-
level bug reports will cause misbehaviours to drop out without
ever having been attributed to any specific fix.

The Cathedral and the Bazaar

35

22 December 2000 18:18

The Cathedral and the Bazaar

Complex multi-symptom errors also tend to have multiple trace
paths from surface symptoms back to the actual bug. Which of the
trace paths a given developer or tester can chase may depend on
subtleties of that person’s environment, and may well change in a
not obviously deterministic way over time. In effect, each devel-
oper and tester samples a semi-random set of the program’s state
space when looking for the etiology of a symptom. The more sub-
tle and complex the bug, the less likely that skill will be able to
guarantee the relevance of that sample.

For simple and easily reproducible bugs, then, the accent will be
on the “semi” rather than the “random”; debugging skill and inti-
macy with the code and its architecture will matter a lot. But for
complex bugs, the accent will be on the “random”. Under these
circumstances many people running traces will be much more
effective than a few people running traces sequentially—even if
the few have a much higher average skill level.

This effect will be greatly amplified if the difficulty of following
trace paths from different surface symptoms back to a bug varies
significantly in a way that can’t be predicted by looking at the
symptoms. A single developer sampling those paths sequentially
will be as likely to pick a difficult trace path on the first try as an
easy one. On the other hand, suppose many people are trying
trace paths in parallel while doing rapid releases. Then it is likely
one of them will find the easiest path immediately, and nail the
bug in a much shorter time. The project maintainer will see that,
ship a new release, and the other people running traces on the
same bug will be able to stop before having spent too much time
on their more difficult traces.7

When Is a Rose Not a Rose?

Having studied Linus’s behavior and formed a theory about why it
was successful, I made a conscious decision to test this theory on
my new (admittedly much less complex and ambitious) project.

36

22 December 2000 18:18

But the first thing I did was reorganize and simplify popclient a
lot. Carl Harris’s implementation was very sound, but exhibited a
kind of unnecessary complexity common to many C program-
mers. He treated the code as central and the data structures as
support for the code. As a result, the code was beautiful but the
data structure design ad hoc and rather ugly (at least by the high
standards of this veteran LISP hacker).

I had another purpose for rewriting besides improving the code
and the data structure design, however. That was to evolve it into
something I understood completely. It’s no fun to be responsible
for fixing bugs in a program you don’t understand.

For the first month or so, then, I was simply following out the
implications of Carl’s basic design. The first serious change I made
was to add IMAP support. I did this by reorganizing the protocol
machines into a generic driver and three method tables (for POP2,
POP3, and IMAP). This and the previous changes illustrate a gen-
eral principle that’s good for programmers to keep in mind, espe-
cially in languages like C that don’t naturally do dynamic typing:

9. Smart data structures and dumb code works a
lot better than the other way around.

Brooks, Chapter 9: ‘‘Show me your flowchart and conceal your
tables, and I shall continue to be mystified. Show me your tables,
and I won’t usually need your flowchart; it’ll be obvious.’’ Allow-
ing for 30 years of terminological/cultural shift, it’s the same
point.

At this point (early September 1996, about six weeks from zero) I
started thinking that a name change might be in order—after all,
it wasn’t just a POP client any more. But I hesitated, because there
was as yet nothing genuinely new in the design. My version of
popclient had yet to develop an identity of its own.

That changed, radically, when popclient learned how to forward
fetched mail to the SMTP port. I’ll get to that in a moment. But
first: I said earlier that I’d decided to use this project to test my

The Cathedral and the Bazaar

37

22 December 2000 18:18

The Cathedral and the Bazaar

theory about what Linus Torvalds had done right. How (you may
well ask) did I do that? In these ways:

• I released early and often (almost never less often than every
10 days; during periods of intense development, once a day).

• I grew my beta list by adding to it everyone who contacted me
about fetchmail.

• I sent chatty announcements to the beta list whenever I
released, encouraging people to participate.

• I listened to my beta-testers, polling them about design deci-
sions and stroking them whenever they sent in patches and
feedback.

The payoff from these simple measures was immediate. From the
beginning of the project, I got bug reports of a quality most devel-
opers would kill for, often with good fixes attached. I got thought-
ful criticism, I got fan mail, I got intelligent feature suggestions.
Which leads to:

10.If you treat your beta-testers as if they’re your
most valuable resource, they will respond by
becoming your most valuable resource.

One interesting measure of fetchmail’s success is the sheer size of
the project beta list, fetchmail-friends. At the time of latest revi-
sion of this paper (November 2000) it has 287 members and is
adding 2 or 3 a week.

Actually, when I revised in late May 1997 I found the list was
beginning to lose members from its high of close to 300 for an
interesting reason. Several people have asked me to unsubscribe
them because fetchmail is working so well for them that they no
longer need to see the list traffic! Perhaps this is part of the normal
life-cycle of a mature bazaar-style project.

38

22 December 2000 18:18

Popclient Becomes Fetchmail

The real turning point in the project was when Harry Hochheiser
sent me his scratch code for forwarding mail to the client
machine’s SMTP port. I realized almost immediately that a reliable
implementation of this feature would make all the other mail
delivery modes next to obsolete.

For many weeks I had been tweaking fetchmail rather incremen-
tally while feeling like the interface design was serviceable but
grubby — inelegant and with too many exiguous options hanging
out all over. The options to dump fetched mail to a mailbox file or
standard output particularly bothered me, but I couldn’t figure out
why.

(If you don’t care about the technicalia of Internet mail, the next
two paragraphs can be safely skipped.)

What I saw when I thought about SMTP forwarding was that
popclient had been trying to do too many things. It had been
designed to be both a mail transport agent (MTA) and a local
delivery agent (MDA). With SMTP forwarding, it could get out of
the MDA business and be a pure MTA, handing off mail to other
programs for local delivery just as sendmail does.

Why mess with all the complexity of configuring a mail delivery
agent or setting up lock-and-append on a mailbox when port 25 is
almost guaranteed to be there on any platform with TCP/IP sup-
port in the first place? Especially when this means retrieved mail is
guaranteed to look like normal sender-initiated SMTP mail, which
is really what we want anyway.

(Back to a higher level . . .)

Even if you didn’t follow the preceding technical jargon, there are
several important lessons here. First, this SMTP-forwarding con-
cept was the biggest single payoff I got from consciously trying to
emulate Linus’s methods. A user gave me this terrific idea—all I
had to do was understand the implications.

The Cathedral and the Bazaar

39

22 December 2000 18:18

The Cathedral and the Bazaar

11.The next best thing to having good ideas is rec-
ognizing good ideas from your users. Sometimes
the latter is better.

Interestingly enough, you will quickly find that if you are com-
pletely and self-deprecatingly truthful about how much you owe
other people, the world at large will treat you as though you did
every bit of the invention yourself and are just being becomingly
modest about your innate genius. We can all see how well this
worked for Linus!

(When I gave my talk at the first Perl Conference in August 1997,
hacker extraordinaire Larry Wall was in the front row. As I got to
the last line above he called out, religious-revival style, ‘‘Tell it, tell
it, brother!’’ The whole audience laughed, because they knew this
had worked for the inventor of Perl, too.)

After a few weeks of running the project in the same spirit, I
began to get similar praise not just from my users but from other
people to whom the word leaked out. I stashed away some of that
email; I’ll look at it again sometime if I ever start wondering
whether my life has been worthwhile :-).

But there are two more fundamental, non-political lessons here
that are general to all kinds of design.

12.Often, the most striking and innova tive solu-
tions come from realizing that your concept of
the problem was wrong.

I had been trying to solve the wrong problem by continuing to
develop popclient as a combined MTA/MDA with all kinds of
funky local delivery modes. Fetchmail’s design needed to be
rethought from the ground up as a pure MTA, a part of the nor-
mal SMTP-speaking Internet mail path.

When you hit a wall in development—when you find yourself
hard put to think past the next patch—it’s often time to ask not
whether you’ve got the right answer, but whether you’re asking
the right question. Perhaps the problem needs to be reframed.

40

22 December 2000 18:18

Well, I had reframed my problem. Clearly, the right thing to do
was (1) hack SMTP forwarding support into the generic driver, (2)
make it the default mode, and (3) eventually throw out all the
other delivery modes, especially the deliver-to-file and deliver-to-
standard-output options.

I hesitated over step 3 for some time, fearing to upset long-time
popclient users dependent on the alternate delivery mechanisms.
In theory, they could immediately switch to .forward files or their
non-sendmail equivalents to get the same effects. In practice the
transition might have been messy.

But when I did it, the benefits proved huge. The cruftiest parts of
the driver code vanished. Configuration got radically simpler—no
more grovelling around for the system MDA and user’s mailbox,
no more worries about whether the underlying OS supports file
locking.

Also, the only way to lose mail vanished. If you specified delivery
to a file and the disk got full, your mail got lost. This can’t happen
with SMTP forwarding because your SMTP listener won’t return
OK unless the message can be delivered or at least spooled for
later delivery.

Also, performance improved (though not so you’d notice it in a
single run). Another not insignificant benefit of this change was
that the manual page got a lot simpler.

Later, I had to bring delivery via a user-specified local MDA back
in order to allow handling of some obscure situations involving
dynamic SLIP. But I found a much simpler way to do it.

The moral? Don’t hesitate to throw away superannuated features
when you can do it without loss of effectiveness. Antoine de Saint-
Exupéry (who was an aviator and aircraft designer when he
wasn’t authoring classic children’s books) said:

13.‘‘Perfection (in design) is achieved not when
there is nothing more to add, but rather when
there is nothing more to take awa y.’’

The Cathedral and the Bazaar

41

22 December 2000 18:18

The Cathedral and the Bazaar

When your code is getting both better and simpler, that is when
you know it’s right. And in the process, the fetchmail design
acquired an identity of its own, different from the ancestral
popclient.

It was time for the name change. The new design looked much
more like a dual of sendmail than the old popclient had; both are
MTAs, but where sendmail pushes then delivers, the new
popclient pulls then delivers. So, two months off the blocks, I
renamed it fetchmail.

There is a more general lesson in this story about how SMTP
delivery came to fetchmail. It is not only debugging that is paral-
lelizable; development and (to a perhaps surprising extent) explo-
ration of design space is, too. When your development mode is
rapidly iterative, development and enhancement may become spe-
cial cases of debugging—fixing ‘bugs of omission’ in the original
capabilities or concept of the software.

Even at a higher level of design, it can be very valuable to have
lots of co-developers random-walking through the design space
near your product. Consider the way a puddle of water finds a
drain, or better yet how ants find food: exploration essentially by
diffusion, followed by exploitation mediated by a scalable com-
munication mechanism. This works very well; as with Harry
Hochheiser and me, one of your outriders may well find a huge
win nearby that you were just a little too close-focused to see.

Fetchmail Grows Up

There I was with a neat and innovative design, code that I knew
worked well because I used it every day, and a burgeoning beta
list. It gradually dawned on me that I was no longer engaged in a
trivial personal hack that might happen to be useful to few other
people. I had my hands on a program that every hacker with a
Unix box and a SLIP/PPP mail connection really needs.

42

22 December 2000 18:18

With the SMTP forwarding feature, it pulled far enough in front
of the competition to potentially become a category killer, one of
those classic programs that fills its niche so competently that the
alternatives are not just discarded but almost forgotten.

I think you can’t really aim or plan for a result like this. You have
to get pulled into it by design ideas so powerful that afterward the
results just seem inevitable, natural, even foreordained. The only
way to try for ideas like that is by having lots of ideas—or by hav-
ing the engineering judgment to take other people’s good ideas
beyond where the originators thought they could go.

Andy Tanenbaum had the original idea to build a simple native
Unix for IBM PCs, for use as a teaching tool (he called it Minix).
Linus Torvalds pushed the Minix concept further than Andrew
probably thought it could go—and it grew into something won-
derful. In the same way (though on a smaller scale), I took some
ideas by Carl Harris and Harry Hochheiser and pushed them
hard. Neither of us was original in the romantic way people think
is genius. But then, most science and engineering and software
development isn’t done by original genius, hacker mythology to
the contrary.

The results were pretty heady stuff all the same—in fact, just the
kind of success every hacker lives for! And they meant I would
have to set my standards even higher. To make fetchmail as good
as I now saw it could be, I’d have to write not just for my own
needs, but also include and support features necessary to others
outside my orbit. And do that while keeping the program simple
and robust.

The first and overwhelmingly most important feature I wrote after
realizing this was multidrop support—the ability to fetch mail
from mailboxes that had accumulated all mail for a group of
users, and then route each piece of mail to its individual recipients.

I decided to add the multidrop support partly because some users
were clamoring for it, but mostly because I thought it would shake

The Cathedral and the Bazaar

43

22 December 2000 18:18

The Cathedral and the Bazaar

bugs out of the single-drop code by forcing me to deal with
addressing in full generality. And so it proved. Getting RFC 822
(http://info.internet.isi.edu:80/in-notes/rfc/files/rfc822.txt) address
parsing right took me a remarkably long time, not because any
individual piece of it is hard but because it involved a pile of inter-
dependent and fussy details.

But multidrop addressing turned out to be an excellent design
decision as well. Here’s how I knew:

14.Any tool should be useful in the expected way,
but a truly great tool lends itself to uses you
never expected.

The unexpected use for multidrop fetchmail is to run mailing lists
with the list kept, and alias expansion done, on the client side of
the Internet connection. This means someone running a personal
machine through an ISP account can manage a mailing list with-
out continuing access to the ISP’s alias files.

Another important change demanded by my beta-testers was sup-
port for 8-bit MIME (Multipurpose Internet Mail Extensions)
operation. This was pretty easy to do, because I had been careful
to keep the code 8-bit clean (that is, to not press the 8th bit,
unused in the ASCII character set, into service to carry informa-
tion within the program). Not because I anticipated the demand
for this feature, but rather in obedience to another rule:

15.When writing gateway software of any kind, take
pains to disturb the data stream as little as pos-
sible — and never throw away information unless the
recipient forces you to!

Had I not obeyed this rule, 8-bit MIME support would have been
difficult and buggy. As it was, all I had to do is read the MIME
standard (RFC 1652, http://info.internet.isi.edu:80/in-notes/rfc/
files/rfc1652.txt) and add a trivial bit of header-generation logic.

Some European users bugged me into adding an option to limit
the number of messages retrieved per session (so they can control
costs from their expensive phone networks). I resisted this for a

44

22 December 2000 18:18

long time, and I’m still not entirely happy about it. But if you’re
writing for the world, you have to listen to your customers—this
doesn’t change just because they’re not paying you in money.

A Few More Lessons from Fetchmail

Before we go back to general software-engineering issues, there
are a couple more specific lessons from the fetchmail experience to
ponder. Nontechnical readers can safely skip this section.

The rc (control) file syntax includes optional ‘noise’ keywords that
are entirely ignored by the parser. The English-like syntax they
allow is considerably more readable than the traditional terse key-
word-value pairs you get when you strip them all out.

These started out as a late-night experiment when I noticed how
much the rc file declarations were beginning to resemble an imper-
ative minilanguage. (This is also why I changed the original
popclient ‘‘server’’ keyword to ‘‘poll’’).

It seemed to me that trying to make that imperative minilanguage
more like English might make it easier to use. Now, although I’m
a convinced partisan of the ‘‘make it a language’’ school of design
as exemplified by Emacs and HTML and many database engines, I
am not normally a big fan of ‘‘English-like’’ syntaxes.

Traditionally programmers have tended to favor control syntaxes
that are very precise and compact and have no redundancy at all.
This is a cultural legacy from when computing resources were
expensive, so parsing stages had to be as cheap and simple as pos-
sible. English, with about 50% redundancy, looked like a very
inappropriate model then.

This is not my reason for normally avoiding English-like syntaxes;
I mention it here only to demolish it. With cheap cycles and core,
terseness should not be an end in itself. Nowadays it’s more
important for a language to be convenient for humans than to be
cheap for the computer.

The Cathedral and the Bazaar

45

22 December 2000 18:18

The Cathedral and the Bazaar

There remain, however, good reasons to be wary. One is the com-
plexity cost of the parsing stage—you don’t want to raise that to
the point where it’s a significant source of bugs and user confusion
in itself. Another is that trying to make a language syntax English-
like often demands that the ‘‘English’’ it speaks be bent seriously
out of shape, so much so that the superficial resemblance to natu-
ral language is as confusing as a traditional syntax would have
been. (You see this bad effect in a lot of so-called ‘‘fourth genera-
tion’’ and commercial database-query languages.)

The fetchmail control syntax seems to avoid these problems
because the language domain is extremely restricted. It’s nowhere
near a general-purpose language; the things it says simply are not
very complicated, so there’s little potential for confusion in mov-
ing mentally between a tiny subset of English and the actual con-
trol language. I think there may be a broader lesson here:

16.When your language is nowhere near Turing-
complete, syntactic sugar can be your friend.

Another lesson is about security by obscurity. Some fetchmail
users asked me to change the software to store passwords
encrypted in the rc file, so snoopers wouldn’t be able to casually
see them.

I didn’t do it, because this doesn’t actually add protection. Anyone
who’s acquired permissions to read your rc file will be able to run
fetchmail as you anyway—and if it’s your password they’re after,
they’d be able to rip the necessary decoder out of the fetchmail
code itself to get it.

All .fetchmailrc password encryption would have done is give a
false sense of security to people who don’t think very hard. The
general rule here is:

17.A security system is only as secure as its secret.
Beware of pseudo-secrets.

46

22 December 2000 18:18

Necessary Preconditions
for the Bazaar Style

Early reviewers and test audiences for this essay consistently raised
questions about the preconditions for successful bazaar-style
development, including both the qualifications of the project
leader and the state of code at the time one goes public and starts
to try to build a co-developer community.

It’s fairly clear that one cannot code from the ground up in bazaar
style.8 One can test, debug and improve in bazaar style, but it
would be very hard to originate a project in bazaar mode. Linus
didn’t try it. I didn’t either. Your nascent developer community
needs to have something runnable and testable to play with.

When you start community-building, what you need to be able to
present is a plausible promise. Your program doesn’t have to work
particularly well. It can be crude, buggy, incomplete, and poorly
documented. What it must not fail to do is (a) run, and (b) con-
vince potential co-developers that it can be evolved into something
really neat in the foreseeable future.

Linux and fetchmail both went public with strong, attractive basic
designs. Many people thinking about the bazaar model as I have
presented it have correctly considered this critical, then jumped
from that to the conclusion that a high degree of design intuition
and cleverness in the project leader is indispensable.

But Linus got his design from Unix. I got mine initially from the
ancestral popclient (though it would later change a great deal,
much more proportionately speaking than has Linux). So does the
leader/coordinator for a bazaar-style effort really have to have
exceptional design talent, or can he get by through leveraging the
design talent of others?

I think it is not critical that the coordinator be able to originate
designs of exceptional brilliance, but it is absolutely critical that
the coordinator be able to recognize good design ideas from
others.

The Cathedral and the Bazaar

47

22 December 2000 18:18

The Cathedral and the Bazaar

Both the Linux and fetchmail projects show evidence of this.
Linus, while not (as previously discussed) a spectacularly original
designer, has displayed a powerful knack for recognizing good
design and integrating it into the Linux kernel. And I have already
described how the single most powerful design idea in fetchmail
(SMTP forwarding) came from somebody else.

Early audiences of this essay complimented me by suggesting that
I am prone to undervalue design originality in bazaar projects
because I have a lot of it myself, and therefore take it for granted.
There may be some truth to this; design (as opposed to coding or
debugging) is certainly my strongest skill.

But the problem with being clever and original in software design
is that it gets to be a habit—you start reflexively making things
cute and complicated when you should be keeping them robust
and simple. I have had projects crash on me because I made this
mistake, but I managed to avoid this with fetchmail.

So I believe the fetchmail project succeeded partly because I
restrained my tendency to be clever; this argues (at least) against
design originality being essential for successful bazaar projects.
And consider Linux. Suppose Linus Torvalds had been trying to
pull off fundamental innovations in operating system design dur-
ing the development; does it seem at all likely that the resulting
kernel would be as stable and successful as what we have?

A certain base level of design and coding skill is required, of
course, but I expect almost anybody seriously thinking of launch-
ing a bazaar effort will already be above that minimum. The open-
source community’s internal market in reputation exerts subtle
pressure on people not to launch development efforts they’re not
competent to follow through on. So far this seems to have worked
pretty well.

There is another kind of skill not normally associated with soft-
ware development which I think is as important as design clever-
ness to bazaar projects—and it may be more important. A bazaar

48

22 December 2000 18:18

project coordinator or leader must have good people and commu-
nications skills.

This should be obvious. In order to build a development commu-
nity, you need to attract people, interest them in what you’re
doing, and keep them happy about the amount of work they’re
doing. Technical sizzle will go a long way towards accomplishing
this, but it’s far from the whole story. The personality you project
matters, too.

It is not a coincidence that Linus is a nice guy who makes people
like him and want to help him. It’s not a coincidence that I’m an
energetic extrovert who enjoys working a crowd and has some of
the delivery and instincts of a stand-up comic. To make the bazaar
model work, it helps enormously if you have at least a little skill at
charming people.

The Social Context of Open-Source
Software

It is truly written: the best hacks start out as personal solutions to
the author’s everyday problems, and spread because the problem
turns out to be typical for a large class of users. This takes us back
to the matter of rule 1, restated in a perhaps more useful way:

18.To solve an interesting problem, start by finding
a problem that is interesting to you.

So it was with Carl Harris and the ancestral popclient, and so
with me and fetchmail. But this has been understood for a long
time. The interesting point, the point that the histories of Linux
and fetchmail seem to demand we focus on, is the next stage—the
evolution of software in the presence of a large and active commu-
nity of users and co-developers.

In The Mythical Man-Month, Fred Brooks observed that program-
mer time is not fungible; adding developers to a late software pro-
ject makes it later. As we’ve seen previously, he argued that the
complexity and communication costs of a project rise with the

The Cathedral and the Bazaar

49

22 December 2000 18:18

The Cathedral and the Bazaar

square of the number of developers, while work done only rises
linearly. Brooks’s Law has been widely regarded as a truism. But
we’ve examined in this essay a number of ways in which the pro-
cess of open-source development falsifies the assumptionms
behind it—and, empirically, if Brooks’s Law were the whole pic-
ture, Linux would be impossible.

Gerald Weinberg’s classic The Psychology of Computer Program-
ming supplied what, in hindsight, we can see as a vital correction
to Brooks. In his discussion of egoless programming, Weinberg
observed that in shops where developers are not territorial about
their code, and encourage other people to look for bugs and
potential improvements in it, improvement happens dramatically
faster than elsewhere. (Recently, Kent Beck’s ’extreme program-
ming’ technique of deploying coders in pairs who look over one
another’s shoulders might be seen as an attempt to force this
effect.)

Weinberg’s choice of terminology has perhaps prevented his analy-
sis from gaining the acceptance it deserved—one has to smile at
the thought of describing Internet hackers as egoless. But I think
his argument looks more compelling today than ever.

The bazaar method, by harnessing the full power of the egoless
programming effect, strongly mitigates the effect of Brooks’s Law.
The principle behind Brooks’s Law is not repealed, but given a
large developer population and cheap communications its effects
can be swamped by competing nonlinearities that are not other-
wise visible. This resembles the relationship between Newtonian
and Einsteinian physics—the older system is still valid at low ener-
gies, but if you push mass and velocity high enough you get sur-
prises like nuclear explosions or Linux.

The history of Unix should have prepared us for what we’re learn-
ing from Linux (and what I’ve verified experimentally on a smaller
scale by deliberately copying Linus’s methods 9). That is, while
coding remains an essentially solitary activity, the really great
hacks come from harnessing the attention and brainpower of

50

22 December 2000 18:18

entire communities. The developer who uses only his or her own
brain in a closed project is going to fall behind the developer who
knows how to create an open, evolutionary context in which feed-
back exploring the design space, code contributions, bug-spotting,
and other improvements come from from hundreds (perhaps thou-
sands) of people.

But the traditional Unix world was prevented from pushing this
approach to the ultimate by several factors. One was the legal
contraints of various licenses, trade secrets, and commercial inter-
ests. Another (in hindsight) was that the Internet wasn’t yet good
enough.

Before cheap Internet, there were some geographically compact
communities where the culture encouraged Weinberg’s egoless
programming, and a developer could easily attract a lot of skilled
kibitzers and co-developers. Bell Labs, the MIT AI and LCS labs,
UC Berkeley—these became the home of innovations that are leg-
endary and still potent.

Linux was the first project for which a conscious and successful
effort to use the entire world as its talent pool was made. I don’t
think it’s a coincidence that the gestation period of Linux coin-
cided with the birth of the World Wide Web, and that Linux left
its infancy during the same period in 1993–1994 that saw the
takeoff of the ISP industry and the explosion of mainstream inter-
est in the Internet. Linus was the first person who learned how to
play by the new rules that pervasive Internet access made possible.

While cheap Internet was a necessary condition for the Linux
model to evolve, I think it was not by itself a sufficient condition.
Another vital factor was the development of a leadership style and
set of cooperative customs that could allow developers to attract
co-developers and get maximum leverage out of the medium.

But what is this leadership style and what are these customs? They
cannot be based on power relationships—and even if they could
be, leadership by coercion would not produce the results we see.

The Cathedral and the Bazaar

51

22 December 2000 18:18

The Cathedral and the Bazaar

Weinberg quotes the autobiography of the 19th-century Russian
anarchist Pyotr Alexeyvich Kropotkin’s Memoirs of a Revolution-
ist to good effect on this subject:

Having been brought up in a serf-owner’s family, I entered
acti ve life, like all young men of my time, with a great
deal of confidence in the necessity of commanding, order-
ing, scolding, punishing and the like. But when, at an
early stage, I had to manage serious enterprises and to
deal with [free] men, and when each mistake would lead
at once to heavy consequences, I began to appreciate the
difference between acting on the principle of command
and discipline and acting on the principle of common
understanding. The former works admirably in a military
parade, but it is worth nothing where real life is con-
cerned, and the aim can be achieved only through the
severe effort of many converging wills.

The ‘‘severe effort of many converging wills’’ is precisely what a
project like Linux requires—and the ‘‘principle of command’’ is
effectively impossible to apply among volunteers in the anarchist’s
paradise we call the Internet. To operate and compete effectively,
hackers who want to lead collaborative projects have to learn how
to recruit and energize effective communities of interest in the
mode vaguely suggested by Kropotkin’s ‘‘principle of understand-
ing’’. They must learn to use Linus’s Law.10

Earlier, I referred to the Delphi Effect as a possible explanation for
Linus’s Law. But more powerful analogies to adaptive systems in
biology and economics also irresistably suggest themselves. The
Linux world behaves in many respects like a free market or an
ecology, a collection of selfish agents attempting to maximize util-
ity, which in the process produces a self-correcting spontaneous
order more elaborate and efficient than any amount of central
planning could have achieved. Here, then, is the place to seek the
‘‘principle of understanding’’.

52

22 December 2000 18:18

The ‘‘utility function’’ Linux hackers are maximizing is not classi-
cally economic, but is the intangible of their own ego satisfaction
and reputation among other hackers. (One may call their motiva-
tion ‘‘altruistic’’, but this ignores the fact that altruism is itself a
form of ego satisfaction for the altruist.) Voluntary cultures that
work this way are not actually uncommon; one other in which I
have long participated is science fiction fandom, which unlike
hackerdom has long explicitly recognized ‘‘egoboo’’ (ego-boosting,
or the enhancement of one’s reputation among other fans) as the
basic drive behind volunteer activity.

Linus, by successfully positioning himself as the gatekeeper of a
project in which the development is mostly done by others, and
nurturing interest in the project until it became self-sustaining, has
shown an acute grasp of Kropotkin’s ‘‘principle of shared under-
standing’’. This quasi-economic view of the Linux world enables
us to see how that understanding is applied.

We may view Linus’s method as a way to create an efficient mar-
ket in ‘‘egoboo’’—to connect the selfishness of individual hackers
as firmly as possible to difficult ends that can only be achieved by
sustained cooperation. With the fetchmail project I have shown
(albeit on a smaller scale) that his methods can be duplicated with
good results. Perhaps I have even done it a bit more consciously
and systematically than he.

Many people (especially those who politically distrust free mar-
kets) would expect a culture of self-directed egoists to be frag-
mented, territorial, wasteful, secretive, and hostile. But this
expectation is clearly falsified by (to give just one example) the
stunning variety, quality, and depth of Linux documentation. It is
a hallowed given that programmers hate documenting; how is it,
then, that Linux hackers generate so much documentation? Evi-
dently Linux’s free market in egoboo works better to produce vir-
tuous, other-directed behavior than the massively-funded
documentation shops of commercial software producers.

The Cathedral and the Bazaar

53

22 December 2000 18:18

The Cathedral and the Bazaar

Both the fetchmail and Linux kernel projects show that by
properly rewarding the egos of many other hackers, a strong
developer/coordinator can use the Internet to capture the benefits
of having lots of co-developers without having a project collapse
into a chaotic mess. So to Brooks’s Law, I counter-propose the fol-
lowing:

19.Provided the development coordinator has a
communications medium at least as good as the
Internet, and knows how to lead without coer-
cion, many heads are inevitably better than one.

I think the future of open-source software will increasingly belong
to people who know how to play Linus’s game, people who leave
behind the cathedral and embrace the bazaar. This is not to say
that individual vision and brilliance will no longer matter; rather, I
think that the cutting edge of open-source software will belong to
people who start from individual vision and brilliance, then
amplify it through the effective construction of voluntary commu-
nities of interest.

Perhaps this is not only the future of open-source software. No
closed-source developer can match the pool of talent the Linux
community can bring to bear on a problem. Very few could afford
even to hire the more than 200 (1999: 600, 2000: 800) people
who have contributed to fetchmail!

Perhaps in the end the open-source culture will triumph not
because cooperation is morally right or software ‘‘hoarding’’ is
morally wrong (assuming you believe the latter, which neither
Linus nor I do), but simply because the closed-source world can-
not win an evolutionary arms race with open-source communities
that can put orders of magnitude more skilled time into a
problem.

54

22 December 2000 18:18

On Management and
the Maginot Line

The original Cathedral and Bazaar paper of 1997 ended with the
vision above—that of happy networked hordes of programmer/
anarchists outcompeting and overwhelming the hierarchical world
of conventional closed software.

A good many skeptics weren’t convinced, however; and the ques-
tions they raise deserve a fair engagement. Most of the objections
to the bazaar argument come down to the claim that its propo-
nents have underestimated the productivity-multiplying effect of
conventional management.

Traditionally-minded software-development managers often object
that the casualness with which project groups form and change
and dissolve in the open-source world negates a significant part of
the apparent advantage of numbers that the open-source commu-
nity has over any single closed-source developer. They would
observe that in software development it is really sustained effort
over time and the degree to which customers can expect continu-
ing investment in the product that matters, not just how many
people have thrown a bone in the pot and left it to simmer.

There is something to this argument, to be sure; in fact, I have
developed the idea that expected future service value is the key to
the economics of software production in the essay The Magic
Cauldron .

But this argument also has a major hidden problem; its implicit
assumption that open-source development cannot deliver such sus-
tained effort. In fact, there have been open-source projects that
maintained a coherent direction and an effective maintainer com-
munity over quite long periods of time without the kinds of incen-
tive structures or institutional controls that conventional
management finds essential. The development of the GNU Emacs
editor is an extreme and instructive example; it has absorbed the
efforts of hundreds of contributors over 15 years into a unified

The Cathedral and the Bazaar

55

22 December 2000 18:18

The Cathedral and the Bazaar

architectural vision, despite high turnover and the fact that only
one person (its author) has been continuously active during all
that time. No closed-source editor has ever matched this longevity
record.

This suggests a reason for questioning the advantages of conven-
tionally-managed software development that is independent of the
rest of the arguments over cathedral versus bazaar mode. If it’s
possible for GNU Emacs to express a consistent architectural
vision over 15 years, or for an operating system like Linux to do
the same over 8 years of rapidly changing hardware and platform
technology; and if (as is indeed the case) there have been many
well-architected open-source projects of more than 5 years dura-
tion — then we are entitled to wonder what, if anything, the
tremendous overhead of conventionally managed development is
actually buying us.

Whatever it is certainly doesn’t include reliable execution by dead-
line, or on budget, or to all features of the specification; it’s a rare
managed project that meets even one of these goals, let alone all
three. It also does not appear to be ability to adapt to changes in
technology and economic context during the project lifetime,
either; the open-source community has proven far more effective
on that score (as one can readily verify, for example, by comparing
the 30-year history of the Internet with the short half-lives of pro-
prietary networking technologies—or the cost of the 16-bit to
32-bit transition in Microsoft Windows with the nearly effortless
upward migration of Linux during the same period, not only
along the Intel line of development but to more than a dozen other
hardware platforms, including the 64-bit Alpha as well).

One thing many people think the traditional mode buys you is
somebody to hold legally liable and potentially recover compensa-
tion from if the project goes wrong. But this is an illusion; most
software licenses are written to disclaim even warranty of mer-
chantability, let alone performance—and cases of successful recov-
ery for software nonperformance are vanishingly rare. Even if they

56

22 December 2000 18:18

were common, feeling comforted by having somebody to sue
would be missing the point. You didn’t want to be in a lawsuit;
you wanted working software.

So what is all that management overhead buying?

In order to understand that, we need to understand what software
development managers believe they do. A woman I know who
seems to be very good at this job says software project manage-
ment has five functions:

• To define goals and keep everybody pointed in the same direc-
tion

• To monitor and make sure crucial details don’t get skipped

• To motivate people to do boring but necessary drudgework

• To organize the deployment of people for best productivity

• To marshal resources needed to sustain the project

Apparently worthy goals, all of these; but under the open-source
model, and in its surrounding social context, they can begin to
seem strangely irrelevant. We’ll take them in reverse order.

My friend reports that a lot of resource marshalling is basically
defensive; once you have your people and machines and office
space, you have to defend them from peer managers competing for
the same resources and from higher-ups trying to allocate the most
efficient use of a limited pool.

But open-source developers are volunteers, self-selected for both
interest and ability to contribute to the projects they work on (and
this remains generally true even when they are being paid a salary
to hack open source). The volunteer ethos tends to take care of the
‘attack’ side of resource-marshalling automatically; people bring
their own resources to the table. And there is little or no need for
a manager to ‘play defense’ in the conventional sense.

Anyway, in a world of cheap PCs and fast Internet links, we find
pretty consistently that the only really limiting resource is skilled
attention. Open-source projects, when they founder, essentially

The Cathedral and the Bazaar

57

22 December 2000 18:18

The Cathedral and the Bazaar

never do so for want of machines or links or office space; they die
only when the developers themselves lose interest.

That being the case, it’s doubly important that open-source hack-
ers organize themselves for maximum productivity by self-selec-
tion — and the social milieu selects ruthlessly for competence. My
friend, familiar with both the open-source world and large closed
projects, believes that open source has been successful partly
because its culture only accepts the most talented 5% or so of the
programming population. She spends most of her time organizing
the deployment of the other 95%, and has thus observed first-
hand the well-known variance of a factor of one hundred in pro-
ductivity between the most able programmers and the merely
competent.

The size of that variance has always raised an awkward question:
would individual projects, and the field as a whole, be better off
without more than 50% of the least able in it? Thoughtful man-
agers have understood for a long time that if conventional soft-
ware management’s only function were to convert the least able
from a net loss to a marginal win, the game might not be worth
the candle.

The success of the open-source community sharpens this question
considerably, by providing hard evidence that it is often cheaper
and more effective to recruit self-selected volunteers from the
Internet than it is to manage buildings full of people who would
rather be doing something else.

Which brings us neatly to the question of motivation. An equiva-
lent and often-heard way to state my friend’s point is that tradi-
tional development management is a necessary compensation for
poorly motivated programmers who would not otherwise turn out
good work.

This answer usually travels with a claim that the open-source
community can only be relied on to do work that is “sexy” or
technically sweet; anything else will be left undone (or done only

58

22 December 2000 18:18

poorly) unless it’s churned out by money-motivated cubicle peons
with managers cracking whips over them. I address the psycholog-
ical and social reasons for being skeptical of this claim in Home-
steading the Noosphere. For present purposes, however, I think it’s
more interesting to point out the implications of accepting it as
true.

If the conventional, closed-source, heavily-managed style of soft-
ware development is really defended only by a sort of Maginot
Line of problems conducive to boredom, then it’s going to remain
viable in each individual application area for only so long as
nobody finds those problems really interesting and nobody else
finds any way to route around them. Because the moment there is
open-source competition for a boring piece of software, customers
are going to know that it was finally tackled by someone who
chose that problem to solve because of a fascination with the
problem itself—which, in software as in other kinds of creative
work, is a far more effective motivator than money alone.

Having a conventional management structure solely in order to
motivate, then, is probably good tactics but bad strategy; a short-
term win, but in the longer term a surer loss.

So far, conventional development management looks like a bad
bet now against open source on two points (resource marshalling,
organization), and like it’s living on borrowed time with respect to
a third (motivation). And the poor beleaguered conventional man-
ager is not going to get any succour from the monitoring issue; the
strongest argument the open-source community has is that decen-
tralized peer review trumps all the conventional methods for try-
ing to ensure that details don’t get slipped.

Can we save defining goals as a justification for the overhead of
conventional software project management? Perhaps; but to do so,
we’ll need good reason to believe that management committees
and corporate roadmaps are more successful at defining worthy
and widely shared goals than the project leaders and tribal elders
who fill the analogous role in the open-source world.

The Cathedral and the Bazaar

59

22 December 2000 18:18

The Cathedral and the Bazaar

That is on the face of it a pretty hard case to make. And it’s not so
much the open-source side of the balance (the longevity of Emacs,
or Linus Torvalds’s ability to mobilize hordes of developers with
talk of world domination) that makes it tough. Rather, it’s the
demonstrated awfulness of conventional mechanisms for defining
the goals of software projects.

One of the best-known folk theorems of software engineering is
that 60 to 75% of conventional software projects either are never
completed or are rejected by their intended users. If that range is
anywhere near true (and I’ve never met a manager of any experi-
ence who disputes it), then more projects than not are being aimed
at goals that are either (a) not realistically attainable, or (b) just
plain wrong.

This, more than any other problem, is the reason that in today’s
software engineering world the very phrase ‘‘management commit-
tee’’ is likely to send chills down the hearer’s spine — even (or per-
haps especially) if the hearer is a manager. The days when only
programmers griped about this pattern are long past; Dilbert car-
toons hang over executives’ desks now.

Our reply, then, to the traditional software development manager,
is simple—if the open-source community has really underesti-
mated the value of conventional management, why do so many of
you display contempt for your own process?

Once again the example of the open-source community sharpens
this question considerably—because we have fun doing what we
do. Our creative play has been racking up technical, market-share,
and mind-share successes at an astounding rate. We’re proving not
only that we can do better software, but that joy is an asset.

Two and a half years after the first version of this essay, the most
radical thought I can offer to close with is no longer a vision of an
open-source–dominated software world; that, after all, looks plau-
sible to a lot of sober people in suits these days.

60

22 December 2000 18:18

Rather, I want to suggest what may be a wider lesson about soft-
ware (and probably about every kind of creative or professional
work). Human beings generally take pleasure in a task when it
falls in a sort of optimal-challenge zone; not so easy as to be bor-
ing, not too hard to achieve. A happy programmer is one who is
neither underutilized nor weighed down with ill-formulated goals
and stressful process friction. Enjoyment predicts efficiency.

Relating to your own work process with fear and loathing (even in
the displaced, ironic way suggested by hanging up Dilbert car-
toons) should therefore be regarded in itself as a sign that the pro-
cess has failed. Joy, humor, and playfulness are indeed assets; it
was not mainly for the alliteration that I wrote of “happy hordes”
above, and it is no mere joke that the Linux mascot is a cuddly,
neotenous penguin.

It may well turn out that one of the most important effects of
open source’s success will be to teach us that play is the most eco-
nomically efficient mode of creative work.

Epilog: Netscape Embraces
the Bazaar

It’s a strange feeling to realize you’re helping make history

On 22 January 1998, approximately seven months after I first
published The Cathedral and the Bazaar, Netscape Communi-
cations, Inc. announced plans to give away the source for
Netscape Communicator (see http://www.netscape.com/newsref/
pr/newsrelease558.html). I had had no clue this was going to hap-
pen before the day of the announcement.

Eric Hahn, executive vice president and chief technology officer at
Netscape, emailed me shortly afterwards as follows: ‘‘On behalf of
everyone at Netscape, I want to thank you for helping us get to
this point in the first place. Your thinking and writings were fun-
damental inspirations to our decision.’’

The Cathedral and the Bazaar

61

22 December 2000 18:18

The Cathedral and the Bazaar

The following week I flew out to Silicon Valley at Netscape’s invi-
tation for a day-long strategy conference (on 4 February 1998)
with some of their top executives and technical people. We
designed Netscape’s source-release strategy and license together.

A few days later I wrote the following:

Netscape is about to provide us with a large-scale, real-
world test of the bazaar model in the commercial world.
The open-source culture now faces a danger; if Netscape’s
execution doesn’t work, the open-source concept may be
so discredited that the commercial world won’t touch it
again for another decade.

On the other hand, this is also a spectacular opportunity.
Initial reaction to the move on Wall Street and elsewhere
has been cautiously positi ve. We’re being given a chance
to prove ourselves, too. If Netscape regains substantial
market share through this move, it just may set off a long-
overdue revolution in the software industry.

The next year should be a very instructive and interesting
time.

And indeed it was. As I write in mid-2000, the development of
what was later named Mozilla has been only a qualified success. It
achieved Netscape’s original goal, which was to deny Microsoft a
monopoly lock on the browser market. It has also achieved some
dramatic successes (notably the release of the next-generation
Gecko rendering engine).

However, it has not yet garnered the massive development effort
from outside Netscape that the Mozilla founders had originally
hoped for. The problem here seems to be that for a long time the
Mozilla distribution actually broke one of the basic rules of the
bazaar model; it didn’t ship with something potential contributors
could easily run and see working. (Until more than a year after
release, building Mozilla from source required a license for the
proprietary Motif library.)

62

22 December 2000 18:18

Most negatively (from the point of view of the outside world) the
Mozilla group didn’t ship a production-quality browser for two
and a half years after the project launch—and in 1999 one of the
project’s principals caused a bit of a sensation by resigning, com-
plaining of poor management and missed opportunities. ‘‘Open
source,’’ he correctly observed, ‘‘is not magic pixie dust.’’

And indeed it is not. The long-term prognosis for Mozilla looks
dramatically better now (in November 2000) than it did at the
time of Jamie Zawinski’s resignation letter—in the last few weeks
the nightly releases have finally passed the critical threshold to
production usability. But Jamie was right to point out that going
open will not necessarily save an existing project that suffers from
ill-defined goals or spaghetti code or any of the software engineer-
ing’s other chronic ills. Mozilla has managed to provide an exam-
ple simultaneously of how open source can succeed and how it
could fail.

In the mean time, however, the open-source idea has scored suc-
cesses and found backers elsewhere. Since the Netscape release
we’ve seen a tremendous explosion of interest in the open-source
development model, a trend both driven by and driving the con-
tinuing success of the Linux operating system. The trend Mozilla
touched off is continuing at an accelerating rate.

The Cathedral and the Bazaar

63

22 December 2000 18:18

