-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathextract_sentences.py
executable file
·468 lines (390 loc) · 17.8 KB
/
extract_sentences.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import json
import logging
from random import choice
from sys import exit
import click
from nltk import RegexpParser
from nltk.parse.stanford import StanfordParser
from nltk.tree import Tree
from strephit.commons.tokenize import Tokenizer
from strephit.commons.pos_tag import TTPosTagger
from strephit.commons.io import load_scraped_items
from strephit.commons.split_sentences import PunktSentenceSplitter
from strephit.commons import parallel
logger = logging.getLogger(__name__)
class SentenceExtractor:
""" Base class for sentence extractors.
"""
def __init__(self, corpus, document_key, sentences_key, language, lemma_to_token, match_base_form):
""" Initializes the extractor.
:param iterable corpus: The corpus, iterable of `dict`s
:param str document_key: The key from which to retrieve the textual document
:param str sentences_key: The key to which the extracted sentences should be stored
:param str language: The language the text is in
:param dict lemma_to_token: Mapping from lemma to list of tokens
"""
self.corpus = corpus
self.sentences_key = sentences_key
self.document_key = document_key
self.lemma_to_token = lemma_to_token
self.language = language
self.lemma_to_token = lemma_to_token if match_base_form else self._filter_base_form(lemma_to_token)
self.tokenizer = Tokenizer(self.language)
self.tagger = TTPosTagger(self.language)
def extract_from_item(self, item):
""" Extract sentences from an item. Relies on `setup_extractor`
having been called
:param dict item: Item from which to extract sentences
:return: The original item and list of extracted sentences
:rtype: tuple of dict, list
"""
raise NotImplementedError()
def setup_extractor(self):
""" Optional setup code, run before starting the extraction
"""
pass
def teardown_extractor(self):
""" Optional teardown code, run after the extraction
"""
pass
def extract(self, processes=0):
""" Processes the corpus extracting sentences from each item
and storing them in the item itself.
:param int processes: how many processes to use for parallel tagging
:return: the extracted sentences
:type: generator of dicts
"""
self.setup_extractor()
try:
count = 0
for i, (item, extracted) in enumerate(parallel.map(self.extract_from_item,
self.corpus, processes)):
if not item.get('name') or not item.get('url'):
logger.warn('Skipping item without name or URL')
continue
# assign an unique incremental ID to each sentence
# and store information about the originating document
for each in extracted:
each['id'] = count
each['url'] = item['url']
each['name'] = item['name']
count += 1
yield each
if (i + 1) % 10000 == 0:
logger.info('Processed %d items, extracted %d sentences',
i + 1, count)
logger.info('Done, total sentences extracted: %d', count)
finally:
self.teardown_extractor()
@staticmethod
def _filter_base_form(lemma_to_token):
""" Remove the base form from each list of tokens """
for lemma, tokens in lemma_to_token.iteritems():
if lemma in tokens:
tokens.remove(lemma)
return lemma_to_token
class OneToOneExtractor(SentenceExtractor):
""" 121 extraction strategy: 1 sentence per 1 LU
N.B.: the same sentence will appear only once
the sentence is assigned to a RANDOM LU
"""
splitter = None
all_verb_tokens = None
token_to_lemma = None
def setup_extractor(self):
self.splitter = PunktSentenceSplitter(self.language)
self.all_verb_tokens = set()
self.token_to_lemma = {}
for lemma, match_tokens in self.lemma_to_token.iteritems():
for match_token in match_tokens:
self.all_verb_tokens.add(match_token.lower())
self.token_to_lemma[match_token.lower()] = lemma
logger.debug("All match tokens: %s" % self.all_verb_tokens)
def extract_from_item(self, item):
extracted = []
url = item.get('url')
if not url:
logger.warn('skipping item without url')
return
document = item.get(self.document_key)
if not document:
logger.debug('skipping item without document')
return
elif isinstance(document, list):
document = '\n'.join(document)
sentences = self.splitter.split(document)
for sentence in sentences:
if not sentence.strip():
continue
tagged = self.tagger.tag_one(sentence, skip_unknown=False)
sentence_verbs = [token for token, pos, lemma in tagged if pos.startswith('V')]
matched = []
for token in self.all_verb_tokens:
if token in sentence_verbs:
matched.append(token)
if matched:
assigned_token = choice(matched)
assigned_lu = self.token_to_lemma[assigned_token]
extracted.append({
'lu': assigned_lu,
'text': sentence,
'tagged': tagged,
'url': url,
})
if extracted:
logger.debug("%d sentences extracted", len(extracted))
return item, extracted
else:
logger.debug("No sentences extracted")
class ManyToManyExtractor(SentenceExtractor):
""" n2n extraction strategy: many sentences per many LUs
N.B.: the same sentence is likely to appear multiple times
"""
splitter = None
def setup_extractor(self):
self.splitter = PunktSentenceSplitter(self.language)
def extract_from_item(self, item):
extracted = []
text = item.get(self.document_key)
url = item.get('url')
if not text or not url:
logger.debug('skipping item without url or bio')
return
elif isinstance(text, list):
text = '\n'.join(text)
sentences = self.splitter.split(text)
for sentence in sentences:
if not sentence.strip():
continue
tagged = self.tagger.tag_one(sentence, skip_unknown=False)
sentence_verbs = {token.lower() for token, pos, lemma in tagged if pos.startswith('V')}
for lemma, match_tokens in self.lemma_to_token.iteritems():
for match in match_tokens:
if match.lower() in sentence_verbs:
extracted.append({
'url': url,
'lu': lemma,
'text': sentence,
'tagged': tagged,
})
if extracted:
logger.debug("%d sentences extracted", len(extracted))
return item, extracted
else:
logger.debug("No sentences extracted")
class SyntacticExtractor(SentenceExtractor):
""" Tries to split sentences into sub-sentences so that each of them
contains only one LU
"""
splitter = None
parser = None
token_to_lemma = None
all_verbs = None
def setup_extractor(self):
self.splitter = PunktSentenceSplitter(self.language)
self.parser = StanfordParser(path_to_jar='dev/stanford-corenlp-3.6.0.jar',
path_to_models_jar='dev/stanford-corenlp-3.6.0-models.jar',
java_options=' -mx2G -Djava.ext.dirs=dev/')
self.token_to_lemma = {}
for lemma, tokens in self.lemma_to_token.iteritems():
for t in tokens:
self.token_to_lemma[t] = lemma
self.all_verbs = set(self.token_to_lemma.keys())
def extract_from_item(self, item):
extracted = []
bio = item.get(self.document_key, '').lower()
url = item.get('url')
if not bio or not url:
logger.warn('skipping item without url or bio')
return
try:
roots = self.parser.raw_parse_sents(self.splitter.split(bio))
except (OSError, UnicodeDecodeError):
logger.exception('cannot parse biography, skipping')
return
for root in roots:
root = root.next()
try:
sub_sents = self.find_sub_sentences(root)
except:
logger.exception('cannot find sub-sentences')
continue
for sub in sub_sents:
try:
text = ' '.join(chunk for _, chunk in self.find_terminals(sub))
logger.debug('processing text ' + text)
verbs = set(chunk for _, chunk in self.find_terminals(sub, 'V'))
except:
logger.exception('cannot extract verbs or parse sentence')
continue
found = verbs.intersection(self.all_verbs)
if len(found) == 0:
logger.debug('No matching verbs found in sub sentence')
elif len(found) == 1:
extracted.append({
'lu': self.token_to_lemma[found.pop()],
'text': text,
'url': url,
})
else:
logger.debug('More than one matching verbs found in sentence %s: %s',
text, repr(found))
if extracted:
logger.debug("%d sentences extracted...", len(extracted))
return item, extracted
else:
logger.debug("No sentences extracted. Skipping the whole item ...")
def find_sub_sentences(self, tree):
# sub-sentences are the lowest S nodes in the parse tree
if not isinstance(tree, Tree):
return []
s = reduce(lambda x, y: x + y, map(self.find_sub_sentences, iter(tree)), [])
if tree.label() == 'S':
return s or [tree]
else:
return s
def find_terminals(self, tree, label=None):
# finds all terminals in the tree with the given label prefix
if len(tree) == 1 and not isinstance(tree[0], Tree):
if label is None or tree.label().startswith(label):
yield (tree.label(), tree[0])
else:
for child in tree:
for each in self.find_terminals(child, label):
yield each
class GrammarExtractor(SentenceExtractor):
""" Grammar-based extraction strategy: pick sentences that comply with a pre-defined grammar. """
splitter = None
parser = None
# Grammars rely on POS labels, which are language-dependent
grammars = {
'en': r"""
NOPH: {<PDT>?<DT|PP.*|>?<CD>?<JJ.*|VVN>*<N.+|FW>+<CC>?}
CHUNK: {<NOPH>+<MD>?<V.+>+<IN|TO>?<NOPH>+}
""",
'it': r"""
SN: {<PRO.*|DET.*|>?<ADJ>*<NUM>?<NOM|NPR>+<NUM>?<ADJ|VER:pper>*}
CHUNK: {<SN><VER.*>+<SN>}
""",
}
def setup_extractor(self):
self.splitter = PunktSentenceSplitter(self.language)
grammar = self.grammars.get(self.language)
if grammar:
self.parser = RegexpParser(grammar)
else:
raise ValueError(
"Invalid or unsupported language: '%s'. Please use one of the currently supported ones: %s" % (
self.language, self.grammars.keys())
)
for lemma, match_tokens in self.lemma_to_token.iteritems():
self.lemma_to_token[lemma] = set([match.lower() for match in match_tokens])
def extract_from_item(self, item):
extracted = []
url = item.get('url')
if not url:
logger.warn('skipping item without url')
return
document = item.get(self.document_key)
if not document:
return
elif isinstance(document, list):
document = '\n'.join(document)
# Sentence splitting
sentences = self.splitter.split(document)
tokens = 0
for sentence in sentences:
if not sentence.strip():
continue
tagged = [(token, pos) for token, pos, lemma in self.tagger.tag_one(sentence)]
# Parsing via grammar
parsed = self.parser.parse(tagged)
# Loop over sub-sentences that match the grammar
for grammar_match in parsed.subtrees(lambda t: t.label() == 'CHUNK'):
logger.debug("Grammar match: '%s'" % grammar_match)
# Look up the LU
for token, pos in grammar_match.leaves():
# Restrict match to sub-sentence verbs only
if pos.startswith('V'):
for lemma, match_tokens in self.lemma_to_token.iteritems():
if token.lower() in match_tokens:
# Return joined chunks only
# TODO test with full sentence as well
# TODO re-constitute original text (now join on space)
text = ' '.join([leaf[0] for leaf in grammar_match.leaves()])
logger.debug("Extracted sentence: '%s'" % text)
logger.debug("Sentence token '%s' is in matches %s" % (token, match_tokens))
logger.debug("Extracted sentence: %s" % text)
extracted.append({
'lu': lemma,
'text': text,
'tagged': tagged,
'url': url,
})
if extracted:
logger.debug("%d sentences extracted. Removing the full text from the item ...", len(extracted))
item.pop(self.document_key)
return item, extracted
else:
logger.debug("No sentences extracted. Skipping the whole item ...")
def extract_sentences(corpus, sentences_key, document_key, language,
lemma_to_tokens, strategy, match_base_form, processes=0):
"""
Extract sentences from the given corpus by matching tokens against a given set.
:param corpus: Corpus as an iterable of documents
:param str sentences_key: dict key where to put extracted sentences
:param str document_key: dict key where the textual document is
:param str language: ISO 639-1 language code used for tokenization and sentence splitting
:param dict lemma_to_tokens: Dict with corpus lemmas as keys and tokens to be matched as values
:param str strategy: One of the 4 extraction strategies ['121', 'n2n', 'grammar', 'syntactic']
:param bool match_base_form: whether to match verbs base form
:param int processes: How many concurrent processes to use
:return: the corpus, updated with the extracted sentences and the number of extracted sentences
:rtype: generator of tuples
"""
if strategy == 'n2n':
logger.info("About to extract sentences using the 'many to many' strategy: the same "
"sentence is likely to appear multiple times, with different LUs.")
extractor = ManyToManyExtractor
elif strategy == '121':
logger.info("About to extract sentences using the 'one to one' strategy: the same "
"sentence will appear only once.")
extractor = OneToOneExtractor
elif strategy == 'grammar':
logger.info("About to extract sentences using the 'grammar' strategy: the same "
"sentence will appear only once.")
extractor = GrammarExtractor
elif strategy == 'syntactic':
logger.info("About to extract sentences using the 'syntactic' strategy: the same "
"sentence will appear only once.")
extractor = SyntacticExtractor
else:
raise ValueError("Malformed or unsupported extraction strategy: "
"please use one of ['121', 'n2n', 'grammar', or 'syntactic']")
for each in extractor(corpus, document_key, sentences_key, language,
lemma_to_tokens, match_base_form).extract(processes):
yield each
@click.command()
@click.argument('corpus', type=click.Path(exists=True))
@click.argument('lemma_to_tokens', type=click.File('r'))
@click.argument('language_code')
@click.option('--strategy', '-s', type=click.Choice(['n2n', '121', 'grammar', 'syntactic']), default='n2n')
@click.option('--outfile', '-o', type=click.File('w'), default='output/sentences.jsonlines')
@click.option('--sentences-key', default='sentences')
@click.option('--document-key', default='bio')
@click.option('--processes', '-p', default=0)
@click.option('--match-base-form', is_flag=True, default=False)
def main(corpus, lemma_to_tokens, language_code, strategy, outfile, processes,
sentences_key, document_key, match_base_form):
""" Extract corpus sentences containing at least one token in the given set. """
corpus = load_scraped_items(corpus)
updated = extract_sentences(corpus, sentences_key, document_key, language_code,
json.load(lemma_to_tokens), strategy, match_base_form, processes)
for item in updated:
outfile.write(json.dumps(item) + '\n')
logger.info("Dumped sentences to '%s'" % outfile.name)
return 0
if __name__ == '__main__':
exit(main())