-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathretinanet_moganet_small_fpn_1x_coco.py
35 lines (33 loc) · 1.19 KB
/
retinanet_moganet_small_fpn_1x_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
_base_ = [
'../_base_/models/retinanet_moganet_fpn.py',
'../_base_/datasets/coco_detection.py',
'../_base_/schedules/schedule_1x.py',
'../_base_/default_runtime.py'
]
# optimizer
model = dict(
backbone=dict(
type='MogaNet_feat',
arch='small',
drop_path_rate=0.1,
init_cfg=dict(
type='Pretrained',
checkpoint=\
'https://github.com/Westlake-AI/MogaNet/releases/download/moganet-in1k-weights/moganet_small_sz224_8xbs128_ep300.pth.tar',
),
),
neck=dict(
type='FPN',
in_channels=[64, 128, 320, 512],
out_channels=256,
start_level=1,
add_extra_convs='on_input',
num_outs=5))
# optimizer
optimizer = dict(_delete_=True, type='AdamW', lr=0.0001, betas=(0.9, 0.999), weight_decay=0.05,
paramwise_cfg=dict(custom_keys={'layer_scale': dict(decay_mult=0.),
'scale': dict(decay_mult=0.),
'norm': dict(decay_mult=0.)}))
optimizer_config = dict(grad_clip=None)
checkpoint_config = dict(interval=1, max_keep_ckpts=1)
evaluation = dict(save_best='auto')