-
-
Notifications
You must be signed in to change notification settings - Fork 55
/
Simple_RNN_on_imputed_data.py
246 lines (215 loc) · 8.6 KB
/
Simple_RNN_on_imputed_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
"""
The simple RNN classification model for imputed dataset PhysioNet-2012.
If you use code in this repository, please cite our paper as below. Many thanks.
@article{DU2023SAITS,
title = {{SAITS: Self-Attention-based Imputation for Time Series}},
journal = {Expert Systems with Applications},
volume = {219},
pages = {119619},
year = {2023},
issn = {0957-4174},
doi = {https://doi.org/10.1016/j.eswa.2023.119619},
url = {https://www.sciencedirect.com/science/article/pii/S0957417423001203},
author = {Wenjie Du and David Cote and Yan Liu},
}
or
Wenjie Du, David Cote, and Yan Liu. SAITS: Self-Attention-based Imputation for Time Series. Expert Systems with Applications, 219:119619, 2023. https://doi.org/10.1016/j.eswa.2023.119619
"""
# Created by Wenjie Du <wenjay.du@gmail.com>
# License: MIT
import argparse
import os
from datetime import datetime
import h5py
import numpy as np
import torch
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from Global_Config import RANDOM_SEED
from modeling.utils import cal_classification_metrics
from modeling.utils import setup_logger
np.random.seed(RANDOM_SEED)
torch.manual_seed(RANDOM_SEED)
class LoadImputedDataAndLabel(Dataset):
def __init__(self, imputed_data, labels):
self.imputed_data = imputed_data
self.labels = labels
def __len__(self):
return len(self.labels)
def __getitem__(self, idx):
return (
torch.from_numpy(self.imputed_data[idx].astype("float32")),
torch.from_numpy(self.labels[idx].astype("float32")),
)
class ImputedDataLoader:
def __init__(
self,
original_data_path,
imputed_data_path,
seq_len,
feature_num,
batch_size=128,
num_workers=4,
):
"""
original_data_path: path of original dataset, which contains classification labels
imputed_data_path: path of imputed data
"""
self.seq_len = seq_len
self.feature_num = feature_num
self.batch_size = batch_size
self.num_workers = num_workers
with h5py.File(imputed_data_path, "r") as hf:
imputed_train_set = hf["imputed_train_set"][:]
imputed_val_set = hf["imputed_val_set"][:]
imputed_test_set = hf["imputed_test_set"][:]
with h5py.File(original_data_path, "r") as hf:
train_set_labels = hf["train"]["labels"][:]
val_set_labels = hf["val"]["labels"][:]
test_set_labels = hf["test"]["labels"][:]
self.train_set = LoadImputedDataAndLabel(imputed_train_set, train_set_labels)
self.val_set = LoadImputedDataAndLabel(imputed_val_set, val_set_labels)
self.test_set = LoadImputedDataAndLabel(imputed_test_set, test_set_labels)
def get_loaders(self):
train_loader = DataLoader(
self.train_set, self.batch_size, shuffle=True, num_workers=self.num_workers
)
val_loader = DataLoader(
self.val_set, self.batch_size, shuffle=True, num_workers=self.num_workers
)
test_loader = DataLoader(self.test_set, self.batch_size, shuffle=False)
return train_loader, val_loader, test_loader
class SimpleRNNClassification(torch.nn.Module):
def __init__(self, feature_num, rnn_hidden_size, class_num):
super().__init__()
self.rnn = torch.nn.LSTM(
feature_num, hidden_size=rnn_hidden_size, batch_first=True
)
self.fcn = torch.nn.Linear(rnn_hidden_size, class_num)
def forward(self, data):
hidden_states, _ = self.rnn(data)
logits = self.fcn(hidden_states[:, -1, :])
prediction_probabilities = torch.sigmoid(logits)
return prediction_probabilities
def train(model, train_dataloader, val_dataloader, optimizer):
patience = 20
current_patience = patience
best_ROCAUC = 0
for epoch in range(args.epochs):
model.train()
for idx, data in enumerate(train_dataloader):
X, y = map(lambda x: x.to(args.device), data)
optimizer.zero_grad()
probabilities = model(X)
loss = F.binary_cross_entropy(probabilities, y)
loss.backward()
optimizer.step()
# start val below
model.eval()
probability_collector, label_collector = [], []
with torch.no_grad():
for idx, data in enumerate(val_dataloader):
X, y = map(lambda x: x.to(args.device), data)
probabilities = model(X)
probability_collector += probabilities.cpu().tolist()
label_collector += y.cpu().tolist()
probability_collector = np.asarray(probability_collector)
label_collector = np.asarray(label_collector)
classification_metrics = cal_classification_metrics(
probability_collector, label_collector
)
if best_ROCAUC < classification_metrics["ROC_AUC"]:
current_patience = patience
best_ROCAUC = classification_metrics["ROC_AUC"]
# save model
saving_path = os.path.join(
args.sub_model_saving,
"model_epoch_{}_ROCAUC_{:.4f}".format(epoch, best_ROCAUC),
)
torch.save(model.state_dict(), saving_path)
else:
current_patience -= 1
if current_patience == 0:
break
logger.info("All done. Training finished.")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--root_dir", type=str, help="model and log saving dir")
parser.add_argument(
"--original_dataset_path", type=str, help="path of original dataset"
)
parser.add_argument(
"--imputed_dataset_path", type=str, help="path of imputed dataset"
)
parser.add_argument("--seq_len", type=int, help="sequence length")
parser.add_argument("--feature_num", type=int, help="feature num")
parser.add_argument("--rnn_hidden_size", type=int, help="RNN hidden size")
parser.add_argument("--epochs", type=int, default=100, help="max training epochs")
parser.add_argument("--lr", type=float, help="learning rate")
parser.add_argument(
"--test_mode",
dest="test_mode",
action="store_true",
help="test mode to test saved model",
)
parser.add_argument(
"--saved_model_path",
type=str,
default=None,
help="test mode to test saved model",
)
parser.add_argument(
"--device", type=str, default="cuda", help="device to run model"
)
args = parser.parse_args()
if args.test_mode:
assert (
args.saved_model_path is not None
), "saved_model_path must be provided in test mode"
# create dirs
time_now = datetime.now().__format__("%Y-%m-%d_T%H:%M:%S")
log_saving = os.path.join(args.root_dir, "logs")
model_saving = os.path.join(args.root_dir, "models")
args.sub_model_saving = os.path.join(model_saving, time_now)
[
os.makedirs(dir_)
for dir_ in [model_saving, log_saving, args.sub_model_saving]
if not os.path.exists(dir_)
]
# create logger
logger = setup_logger(os.path.join(log_saving, "log_" + time_now), "w")
logger.info(f"args: {args}")
# build models and dataloaders
model = SimpleRNNClassification(args.feature_num, args.rnn_hidden_size, 1)
dataloader = ImputedDataLoader(
args.original_dataset_path,
args.imputed_dataset_path,
args.seq_len,
args.feature_num,
128,
)
train_set_loader, val_set_loader, test_set_loader = dataloader.get_loaders()
if "cuda" in args.device and torch.cuda.is_available():
model = model.to(args.device)
if not args.test_mode:
logger.info("Start training...")
optimizer = torch.optim.Adam(model.parameters(), args.lr)
train(model, train_set_loader, val_set_loader, optimizer)
else:
logger.info("Start testing...")
checkpoint = torch.load(args.saved_model_path)
model.load_state_dict(checkpoint)
model.eval()
probability_collector, label_collector = [], []
for idx, data in enumerate(test_set_loader):
X, y = map(lambda x: x.to(args.device), data)
probabilities = model(X)
probability_collector += probabilities.cpu().tolist()
label_collector += y.cpu().tolist()
probability_collector = np.asarray(probability_collector)
label_collector = np.asarray(label_collector)
classification_metrics = cal_classification_metrics(
probability_collector, label_collector
)
for k, v in classification_metrics.items():
logger.info(f"{k}: {v}")