-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathfilm.py
56 lines (47 loc) · 1.66 KB
/
film.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import torch
from torch import nn
from torch.nn import functional as F
class Scale_4(nn.Module):
def __init__(self, args):
super(Scale_4, self).__init__()
self.vars = nn.ParameterList()
self.args = args
w1 = nn.Parameter(torch.ones(*[args.out_dim + 1, 2*args.out_dim]))
torch.nn.init.kaiming_normal_(w1)
self.vars.append(w1)
self.vars.append(nn.Parameter(torch.zeros(args.out_dim + 1)))
def forward(self, x):
vars = self.vars
x = F.linear(x, vars[0], vars[1])
# x = torch.relu(x)
x = F.leaky_relu(x)
# x = torch.squeeze(x)
x = x.T
x1 = x[:self.args.out_dim].T #.view(x.size(0), self.args.out_dim)
x2 = x[self.args.out_dim:].T #.view(x.size(0), 1)
para_list = [x1, x2]
return para_list
def parameters(self):
return self.vars
class Shift_4(nn.Module):
def __init__(self, args):
super(Shift_4, self).__init__()
self.args = args
self.vars = nn.ParameterList()
w1 = nn.Parameter(torch.ones(*[args.out_dim + 1, 2*args.out_dim]))
torch.nn.init.kaiming_normal_(w1)
self.vars.append(w1)
self.vars.append(nn.Parameter(torch.zeros(args.out_dim + 1)))
def forward(self, x):
vars = self.vars
x = F.linear(x, vars[0], vars[1])
# x = torch.relu(x)
x = F.leaky_relu(x)
# x = torch.squeeze(x)
x = x.T
x1 = x[:self.args.out_dim].T #.view(x.size(0), self.args.out_dim)
x2 = x[self.args.out_dim:].T #.view(x.size(0), 1)
para_list = [x1, x2]
return para_list
def parameters(self):
return self.vars