-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathtrain_lstm_crf.py
270 lines (224 loc) · 12 KB
/
train_lstm_crf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import logging
import tensorflow as tf
import numpy as np
import os
import pickle
import time
import datetime
from model_lstm_crf import MyModel
from public_tools.data_preprocess import read_corpus, load_vocab, load_tag2label, batch_yield, pad_sequences
from public_tools.tag_evaluating import Metrics
from public_tools.entity_evaluating import entity_metrics
from tensorflow.python.saved_model import builder as saved_model_builder
from tensorflow.python.saved_model import signature_constants
from tensorflow.python.saved_model import signature_def_utils
from tensorflow.python.saved_model import tag_constants
from tensorflow.python.saved_model import utils
from tensorflow.python.util import compat
# Logging Set
# ==================================================
log_file_path = "./log/singletask/lstm_run.log"
if os.path.exists(log_file_path): os.remove(log_file_path)
logger = logging.getLogger()
logger.setLevel(logging.INFO)
formatter = logging.Formatter("%(asctime)s | %(message)s", "%Y-%m-%d %H:%M:%S")
chlr = logging.StreamHandler()
chlr.setFormatter(formatter)
fhlr = logging.FileHandler(log_file_path)
fhlr.setFormatter(formatter)
logger.addHandler(chlr)
logger.addHandler(fhlr)
# Parameters
# ==================================================
# Data loading params
tf.flags.DEFINE_string("train_data_file", "./data/clue_ner/train.txt", "Data source for the train data.")
tf.flags.DEFINE_string("test_data_file", "./data/clue_ner/dev.txt", "Data source for the test data.")
tf.flags.DEFINE_string("char_vocab_file", "./data/vocab_cn.txt", "bert char vocab.")
tf.flags.DEFINE_string("tag2label_file", "./data/clue_ner/tag2label.txt", "tag2label dic.")
# Model Hyperparameters
tf.flags.DEFINE_integer("embedding_dim", 768, "Dimensionality of character embedding (default: 128)")
tf.flags.DEFINE_string("filter_sizes", "3,4,5", "Comma-separated filter sizes (default: '3,4,5')")
tf.flags.DEFINE_integer("num_filters", 256, "Number of filters per filter size (default: 128)") # 本数据集256效果最好
tf.flags.DEFINE_integer("max_length", 64, "Length of sentence (default: 160)")
tf.flags.DEFINE_float("dropout_keep_prob", 0.5, "Dropout keep probability (default: 0.5)")
tf.flags.DEFINE_float("l2_reg_lambda", 0.0, "L2 regularization lambda (default: 0.0)")
tf.flags.DEFINE_float("learning_rate", 1e-3, "Learning rate (default: 0.001)")
tf.flags.DEFINE_float("clip_grade", 5.0, "clip_grad (default: 5.0)")
# Training parameters
tf.flags.DEFINE_integer("batch_size", 128, "Batch Size (default: 64)")
tf.flags.DEFINE_integer("num_epochs", 20, "Number of training epochs (default: 200)")
tf.flags.DEFINE_integer("evaluate_every", 200, "Evaluate model on dev set after this many steps (default: 100)")
tf.flags.DEFINE_integer("checkpoint_every", 300, "Save model after this many steps (default: 100)")
tf.flags.DEFINE_integer("num_checkpoints", 5, "Number of checkpoints to store (default: 5)")
# Misc Parameters
tf.flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement")
tf.flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices")
tf.flags.DEFINE_boolean("use_clip_grad", False, "clip grad")
tf.flags.DEFINE_string('model_version', '1', 'version number of the model.')
FLAGS = tf.flags.FLAGS
# Data Preparation
# ==================================================
# Load data
logger.info("Loading data...")
train_data = read_corpus(FLAGS.train_data_file)
logger.info(train_data)
test_data = read_corpus(FLAGS.test_data_file)
char2id, id2char = load_vocab(FLAGS.char_vocab_file)
tag2id, id2tag = load_tag2label(FLAGS.tag2label_file)
# Load embeddings
with open('./embedding/new_bert_embedding.pkl', 'rb') as f:
char_embeddings = pickle.load(f)
# char_embeddings = None
export_path_base = "D:/Expriment/model_output/ner_tool/lstm_crf/single_task/clue_ner/"
export_path = os.path.join(
compat.as_bytes(export_path_base),
compat.as_bytes(str(FLAGS.model_version)))
logger.info('Exporting trained model to', export_path)
# Output directory for models and summaries
timestamp = str(int(time.time()))
checkpoint_out_dir = os.path.join("D:/Expriment/model_output/ner_tool/lstm_crf/single_task/clue_ner/runs/", timestamp)
if not os.path.exists(checkpoint_out_dir):
os.makedirs(checkpoint_out_dir)
logger.info("Writing to {}\n".format(checkpoint_out_dir))
# Training
# ==================================================
with tf.Graph().as_default():
session_conf = tf.compat.v1.ConfigProto(
allow_soft_placement=FLAGS.allow_soft_placement,
log_device_placement=FLAGS.log_device_placement)
sess = tf.Session(config=session_conf)
with sess.as_default():
logger.info("building model...")
model = MyModel(embedding_dim=768,
hidden_dim=300,
vocab_size_char=len(char2id),
vocab_size_bio=len(tag2id),
use_crf=True,
embeddings=char_embeddings,
)
# Define Training procedure
global_step = tf.Variable(0, name="global_step", trainable=False)
optimizer = tf.train.AdamOptimizer(FLAGS.learning_rate)
grads_and_vars = optimizer.compute_gradients(model.loss)
if FLAGS.use_clip_grad:
grads_and_vars = [[tf.clip_by_value(g, FLAGS.clip_grad, FLAGS.clip_grad), v] for g, v in
grads_and_vars]
train_op = optimizer.apply_gradients(grads_and_vars, global_step=global_step)
# Keep track of gradient values and sparsity (optional)
grad_summaries = []
for g, v in grads_and_vars:
if g is not None:
grad_hist_summary = tf.compat.v1.summary.histogram("{}/grad/hist".format(v.name), g)
sparsity_summary = tf.compat.v1.summary.scalar("{}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g))
grad_summaries.append(grad_hist_summary)
grad_summaries.append(sparsity_summary)
grad_summaries_merged = tf.summary.merge(grad_summaries)
# Summaries for loss and accuracy
loss_summary = tf.summary.scalar("loss", model.loss)
# Train Summaries
train_summary_op = tf.summary.merge([loss_summary, grad_summaries_merged])
train_summary_dir = os.path.join(checkpoint_out_dir, "summaries", "train")
if not os.path.exists(train_summary_dir):
os.makedirs(train_summary_dir)
train_summary_writer = tf.summary.FileWriter(train_summary_dir, sess.graph)
# Dev summaries
dev_summary_op = tf.summary.merge([loss_summary])
dev_summary_dir = os.path.join(checkpoint_out_dir, "summaries", "dev")
if not os.path.exists(dev_summary_dir):
os.makedirs(dev_summary_dir)
dev_summary_writer = tf.summary.FileWriter(dev_summary_dir, sess.graph)
# Checkpoint directory. Tensorflow assumes this directory already exists so we need to create it
checkpoint_dir = os.path.abspath(os.path.join(checkpoint_out_dir, "checkpoints"))
checkpoint_prefix = os.path.join(checkpoint_dir, "model")
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
saver = tf.train.Saver(tf.global_variables(), max_to_keep=FLAGS.num_checkpoints)
# Initialize all variables
sess.run(tf.global_variables_initializer())
def train_step(x_batch, input_x_len, y_batch):
"""
A single training step
"""
feed_dict = {
model.input_x: x_batch,
model.input_x_len: input_x_len,
model.input_y: y_batch,
model.dropout_keep_prob: FLAGS.dropout_keep_prob,
model.lr: FLAGS.learning_rate,
}
_, step, summaries, loss = sess.run(
[train_op, global_step, train_summary_op, model.loss],
feed_dict)
time_str = datetime.datetime.now().isoformat()
logger.info("{}: step {}, loss {:g}".format(time_str, step, loss))
train_summary_writer.add_summary(summaries, step)
def dev_step(x_batch, input_x_len, y_batch, writer=None):
"""
Evaluates model on a dev set
"""
feed_dict = {
model.input_x: x_batch,
model.input_x_len: input_x_len,
model.input_y: y_batch,
model.dropout_keep_prob: 1.0,
model.lr: FLAGS.learning_rate,
}
step, summaries, y_pred, loss=sess.run(
[global_step, dev_summary_op, model.outputs, model.loss],
feed_dict)
time_str = datetime.datetime.now().isoformat()
logger.info("{}: step {}, loss {:g}".format(time_str, step, loss))
if writer:
writer.add_summary(summaries, step)
y_pred = y_pred.tolist()
return y_pred
logger.info("model params:")
params_num_all = 0
for variable in tf.trainable_variables():
params_num = 1
for dim in variable.shape:
params_num *= dim
params_num_all += params_num
logger.info("\t {} {} {}".format(variable.name, variable.shape, params_num))
logger.info("all params num: " + str(params_num_all))
logger.info("start training...")
best_f1 = 0.0
for epoch in range(FLAGS.num_epochs):
num_batches = (len(train_data) + FLAGS.batch_size - 1) // FLAGS.batch_size
start_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
is_shuffule = True
batches = batch_yield(train_data, FLAGS.batch_size, char2id, tag2id, shuffle=is_shuffule)
for step, (seqs, labels) in enumerate(batches):
logger.info(' processing: {} batch / {} batches.'.format(step + 1, num_batches) + '\r')
step_num = epoch * num_batches + step + 1
x_train, train_seq_len_list = pad_sequences(seqs, max_len=FLAGS.max_length, pad_mark=0)
labels_train, _ = pad_sequences(labels, max_len=FLAGS.max_length, pad_mark=0)
train_step(x_train, train_seq_len_list, labels_train)
current_step = tf.train.global_step(sess, global_step)
if current_step % FLAGS.evaluate_every == 0:
logger.info("\nEvaluation:")
test_batches = batch_yield(test_data, FLAGS.batch_size, char2id, tag2id, shuffle=is_shuffule)
test_labels_all = []
test_labels_pred = []
x_all = []
for _, (test_seqs, test_labels) in enumerate(test_batches):
x_test, test_seq_len_list = pad_sequences(test_seqs, FLAGS.max_length, pad_mark=0)
y_test, _ = pad_sequences(test_labels, FLAGS.max_length, pad_mark=0)
test_y_pred = dev_step(x_test, test_seq_len_list, y_test, writer=dev_summary_writer)
test_labels_all.extend(y_test)
test_labels_pred.extend(test_y_pred)
x_all.extend(x_test)
logger.info('预测标签与真实标签评价结果......')
metrics = Metrics(test_labels_all, test_labels_pred, id2tag, remove_O=True)
metrics.report_scores()
metrics.report_confusion_matrix()
logger.info('预测实体与真实实体评价结果......')
precision, recall, f1 = entity_metrics(x_all, test_labels_all, test_labels_pred, id2char, id2tag)
logger.info("Test P/R/F1: {} / {} / {}".format(round(precision, 2), round(recall, 2), round(f1, 2)))
if f1 > best_f1:
best_f1 = f1
logger.info("")
if current_step % FLAGS.checkpoint_every == 0:
path = saver.save(sess, checkpoint_prefix, global_step=current_step)
logger.info("Saved model checkpoint to {}\n".format(path))
logger.info('best_f1: {}'.format(best_f1))