-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMix_learning.py
201 lines (187 loc) · 7.27 KB
/
Mix_learning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
from model.MixLearnerV2 import MixLearnerV2
from model.Agent import AgentManager, AgentPolicyNetV3
from model.EpisodePool import EpisodePool
import pandas as pd
from util.logger import get_logger
from util.parser import str2bool
import torch
import os
import json
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--local', type=str2bool, default=False)
parser.add_argument('--dataset_name', type=str, default='BJ_Taxi')
parser.add_argument('--region_name', type=str, default='partA')
parser.add_argument('--debug', type=str2bool, default=False)
parser.add_argument('--pretrain_filename', type=str, default='agent_imitate_learning_v3_drop.pt')
parser.add_argument('--save_agent_file', type=str, default='mix_learning_agent_policy.pt')
parser.add_argument('--save_critic_file', type=str, default='mix_learning_critic.pt')
parser.add_argument('--episode_size', type=int, default=60)
parser.add_argument('--device', type=str, default='cuda:0')
args = parser.parse_args()
local = args.local
dataset_name = args.dataset_name
debug = args.debug
region_name = args.region_name
pretrain_filename = args.pretrain_filename
pretrain_file = './save/{}/{}'.format(dataset_name, pretrain_filename)
episode_size = args.episode_size # 一个小时一个 episode
if local:
data_root = './data/'
else:
data_root = '/mnt/data/jwj/'
device = args.device
torch.cuda.set_device(device)
if dataset_name == 'BJ_Taxi':
# 数据集的大小
road_num = 40306 # 这里是全部北京四环内的道路数,因为我们没有对道路编号进行重编码,所以就保持这样吧
time_size = 2880
elif dataset_name == 'Porto_Taxi':
# dataset_name == 'Porto_Taxi'
road_num = 11095
time_size = 2880
elif dataset_name == 'Xian':
# dataset_name == 'Xian'
road_num = 17378
time_size = 2880
else:
assert dataset_name == 'Chengdu'
road_num = 28823
time_size = 2880
road_pad = road_num
time_pad = time_size
# 定义 agent policy config
if dataset_name == 'BJ_Taxi' or dataset_name == 'Porto_Taxi':
# Agent 策略网络的参数
policy_config = {
'road_num': road_num + 1,
'road_pad': road_pad,
'road_emb_size': 256,
'time_num': time_size + 1,
'time_pad': time_pad,
'time_emb_size': 64,
'device': device,
'preference_size': 16,
'info_size': 128,
'hidden_size': 256,
'head_num': 4,
'SeqMovingStateNet': {
'device': device,
'n_layers': 2
},
'dropout_input_p': 0.2,
'dropout_hidden_p': 0.5
}
else:
assert dataset_name == 'Xian' or dataset_name == 'Chengdu'
policy_config = {
'road_num': road_num + 1,
'road_pad': road_pad,
'road_emb_size': 128,
'time_num': time_size + 1,
'time_pad': time_pad,
'time_emb_size': 32,
'device': device,
'preference_size': 8,
'info_size': 64,
'hidden_size': 128,
'head_num': 4,
'SeqMovingStateNet': {
'device': device,
'n_layers': 2
},
'dropout_input_p': 0.2,
'dropout_hidden_p': 0.5
}
policy_config['SeqMovingStateNet']['input_size'] = policy_config['hidden_size']
policy_config['SeqMovingStateNet']['hidden_size'] = policy_config['hidden_size']
# 定义 Critic config
critic_config = {
'agent_state_size': policy_config['SeqMovingStateNet']['hidden_size'],
'info_size': policy_config['info_size'],
'hidden_size': policy_config['hidden_size'],
'conv_kernel_size': 3,
'stride': 1,
'conv_padding': 1,
'attn_type': 'general_qmix'
}
# 定义 config
config = {
'dataset_name': dataset_name,
'max_step': 2 if debug else 100,
'agent_lr': 0.0005,
'critic_lr': 0.0005,
'optim_alpha': 0.99,
'optim_eps': 1e-8,
'weight_decay': 0.00001,
'batch_size': 64,
'global_gamma': 1.0,
'global_alpha': 0.1,
'local_gamma': 0.99,
'td_lambda': 0.9,
'grad_norm_clip': 5.0, # 这个参数可调
'critic_pretrain_step': 2 if debug else 3000,
'save_agent_file': args.save_agent_file,
'save_critic_file': args.save_critic_file,
'target_update_interval': 40, # 因为我们每一个 episode 是 60 步,所以这里是 40 * 60
'learner_log_interval': 20,
'critic_config': critic_config,
'soft_update': True
}
logger = get_logger(name='Mix_learning')
logger.info('read data')
if dataset_name == 'BJ_Taxi':
# 目前不会实装海淀区
if region_name == 'partA':
train_data = pd.read_csv(
os.path.join(data_root, dataset_name, 'beijing_partA_episode_{}_train.csv'.format(episode_size)))
else:
train_data = pd.read_csv(
os.path.join(data_root, dataset_name, 'beijing_partB_episode_{}_train.csv'.format(episode_size)))
elif dataset_name == 'Xian':
# dataset_name == 'Xian'
if region_name == 'partA':
train_data = pd.read_csv(
os.path.join(data_root, dataset_name, 'xianshi_partA_episode_{}_train.csv'.format(episode_size)))
else:
train_data = pd.read_csv(
os.path.join(data_root, dataset_name, 'xianshi_partB_episode_{}_train.csv'.format(episode_size)))
else:
assert dataset_name == 'Chengdu'
if region_name == 'partA':
train_data = pd.read_csv(os.path.join(data_root, dataset_name, 'chengdushi_partA_episode_{}_train.csv'.format(episode_size)))
else:
train_data = pd.read_csv(os.path.join(data_root, dataset_name, 'chengdushi_partB_episode_{}_train.csv'.format(episode_size)))
# 加载模型
agent_policy = AgentPolicyNetV3(policy_config=policy_config).to(device)
agent_policy.load_state_dict(torch.load(pretrain_file, map_location=device))
logger.info('init agent policy net')
logger.info(agent_policy)
# 加载仿真管理器
with open(os.path.join(data_root, dataset_name, 'road_surrounding_list.json'), 'r') as f:
road_surrounding_list = json.load(f)
with open(os.path.join(data_root, dataset_name, 'road_candidate_list.json'), 'r') as f:
road_candidate_list = json.load(f)
# 加载区域 road list 与 road2grid
with open(os.path.join(data_root, dataset_name, 'region_road_dict.json'), 'r') as f:
region_road_dict = json.load(f)
if region_name == 'partA':
region_road_list = region_road_dict['region_A_road_list']
else:
region_road_list = region_road_dict['region_B_road_list']
with open(os.path.join(data_root, dataset_name, 'road2grid.json'), 'r') as f:
road2grid = json.load(f)
# 定义 agent_manager
agent_manager = AgentManager(road_surrounding_list=road_surrounding_list, road_candidate_list=road_candidate_list,
preference_size=policy_config['preference_size'], info_size=policy_config['info_size'],
num_layers=policy_config['SeqMovingStateNet']['n_layers'],
hidden_size=policy_config['hidden_size'], device=device, dataset_name=dataset_name,
region_road_list=region_road_list, road2grid=road2grid)
critic_config['grid_height'] = agent_manager.img_height
critic_config['grid_width'] = agent_manager.img_width
# 定义 episode pool
episode_pool = EpisodePool(episode_size=episode_size, data=train_data, logger=logger)
# 初始化 liir 学习器
mix_learner = MixLearnerV2(config, agent_manager, agent_policy, episode_pool, logger, device, debug)
# 开始学习
mix_learner.learning()