-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmodel.py
313 lines (255 loc) · 13.8 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import math
import torch
import logging
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from scipy import integrate
from torchdiffeq import odeint
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
def to_flattened_numpy(x):
"""Flatten a torch tensor `x` and convert it to numpy."""
return x.detach().cpu().numpy().reshape((-1,))
def from_flattened_numpy(x, shape):
"""Form a torch tensor with the given `shape` from a flattened numpy array `x`."""
return torch.from_numpy(x.reshape(shape))
def swish(x):
return x * torch.sigmoid(x)
def calc_diffusion_step_embedding(diffusion_steps, diffusion_step_embed_dim_in):
"""
Embed a diffusion step $t$ into a higher dimensional space
E.g. the embedding vector in the 128-dimensional space is
[sin(t * 10^(0*4/63)), ... , sin(t * 10^(63*4/63)),
cos(t * 10^(0*4/63)), ... , cos(t * 10^(63*4/63))]
Parameters:
diffusion_steps (torch.long tensor, shape=(batchsize, 1)):
diffusion steps for batch data
diffusion_step_embed_dim_in (int, default=128):
dimensionality of the embedding space for discrete diffusion steps
Returns:
the embedding vectors (torch.tensor, shape=(batchsize, diffusion_step_embed_dim_in)):
"""
assert diffusion_step_embed_dim_in % 2 == 0
half_dim = diffusion_step_embed_dim_in // 2
_embed = np.log(10000) / (half_dim - 1)
_embed = torch.exp(torch.arange(half_dim) * -_embed).cuda()
_embed = diffusion_steps * _embed
diffusion_step_embed = torch.cat((torch.sin(_embed),
torch.cos(_embed)), 1)
return diffusion_step_embed
"""
Below scripts were borrowed from
https://github.com/philsyn/DiffWave-Vocoder/blob/master/WaveNet.py
"""
# dilated conv layer with kaiming_normal initialization
# from https://github.com/ksw0306/FloWaveNet/blob/master/modules.py
class Conv(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, dilation=1):
super().__init__()
self.padding = dilation * (kernel_size - 1) // 2
self.conv = nn.Conv1d(in_channels, out_channels, kernel_size,
dilation=dilation, padding=self.padding)
self.conv = nn.utils.weight_norm(self.conv)
nn.init.kaiming_normal_(self.conv.weight)
def forward(self, x):
out = self.conv(x)
return out
# conv1x1 layer with zero initialization
# from https://github.com/ksw0306/FloWaveNet/blob/master/modules.py but the scale parameter is removed
class ZeroConv1d(nn.Module):
def __init__(self, in_channel, out_channel):
super().__init__()
self.conv = nn.Conv1d(in_channel, out_channel, kernel_size=1, padding=0)
self.conv.weight.data.zero_()
self.conv.bias.data.zero_()
def forward(self, x):
out = self.conv(x)
return out
# every residual block (named residual layer in paper)
# contains one noncausal dilated conv
class ResidualBlock(nn.Module):
def __init__(self, res_channels, skip_channels, dilation,
diffusion_step_embed_dim_out):
super().__init__()
self.res_channels = res_channels
# Use a FC layer for diffusion step embedding
self.fc_t = nn.Linear(diffusion_step_embed_dim_out, self.res_channels)
# Dilated conv layer
self.dilated_conv_layer = Conv(self.res_channels, 2 * self.res_channels,
kernel_size=3, dilation=dilation)
# Add mel spectrogram upsampler and conditioner conv1x1 layer
self.upsample_conv2d = nn.ModuleList()
for s in [16, 16]:
conv_trans2d = nn.ConvTranspose2d(1, 1, (3, 2 * s),
padding=(1, s // 2),
stride=(1, s))
conv_trans2d = nn.utils.weight_norm(conv_trans2d)
nn.init.kaiming_normal_(conv_trans2d.weight)
self.upsample_conv2d.append(conv_trans2d)
# 80 is mel bands
self.mel_conv = Conv(80, 2 * self.res_channels, kernel_size=1)
# Residual conv1x1 layer, connect to next residual layer
self.res_conv = nn.Conv1d(res_channels, res_channels, kernel_size=1)
self.res_conv = nn.utils.weight_norm(self.res_conv)
nn.init.kaiming_normal_(self.res_conv.weight)
# Skip conv1x1 layer, add to all skip outputs through skip connections
self.skip_conv = nn.Conv1d(res_channels, skip_channels, kernel_size=1)
self.skip_conv = nn.utils.weight_norm(self.skip_conv)
nn.init.kaiming_normal_(self.skip_conv.weight)
def forward(self, input_data):
x, mel_spec, diffusion_step_embed = input_data
h = x
batch_size, n_channels, seq_len = x.shape
assert n_channels == self.res_channels
# Add in diffusion step embedding
part_t = self.fc_t(diffusion_step_embed)
part_t = part_t.view([batch_size, self.res_channels, 1])
h += part_t
# Dilated conv layer
h = self.dilated_conv_layer(h)
# Upsample spectrogram to size of audio
mel_spec = torch.unsqueeze(mel_spec, dim=1)
mel_spec = F.leaky_relu(self.upsample_conv2d[0](mel_spec), 0.4, inplace=False)
mel_spec = F.leaky_relu(self.upsample_conv2d[1](mel_spec), 0.4, inplace=False)
mel_spec = torch.squeeze(mel_spec, dim=1)
assert mel_spec.size(2) >= seq_len
if mel_spec.size(2) > seq_len:
mel_spec = mel_spec[:, :, :seq_len]
mel_spec = self.mel_conv(mel_spec)
h += mel_spec
# Gated-tanh nonlinearity
out = torch.tanh(h[:, :self.res_channels, :]) * torch.sigmoid(h[:, self.res_channels:, :])
# Residual and skip outputs
res = self.res_conv(out)
assert x.shape == res.shape
skip = self.skip_conv(out)
# Normalize for training stability
return (x + res) * math.sqrt(0.5), skip
class ResidualGroup(nn.Module):
def __init__(self, res_channels, skip_channels, num_res_layers, dilation_cycle,
diffusion_step_embed_dim_in,
diffusion_step_embed_dim_mid,
diffusion_step_embed_dim_out):
super().__init__()
self.num_res_layers = num_res_layers
self.diffusion_step_embed_dim_in = diffusion_step_embed_dim_in
# Use the shared two FC layers for diffusion step embedding
self.fc_t1 = nn.Linear(diffusion_step_embed_dim_in, diffusion_step_embed_dim_mid)
self.fc_t2 = nn.Linear(diffusion_step_embed_dim_mid, diffusion_step_embed_dim_out)
# Stack all residual blocks with dilations 1, 2, ... , 512, ... , 1, 2, ..., 512
self.residual_blocks = nn.ModuleList()
for n in range(self.num_res_layers):
self.residual_blocks.append(
ResidualBlock(res_channels, skip_channels,
dilation=2 ** (n % dilation_cycle),
diffusion_step_embed_dim_out=diffusion_step_embed_dim_out))
def forward(self, input_data):
x, mel_spectrogram, diffusion_steps = input_data
# Embed diffusion step t
diffusion_step_embed = calc_diffusion_step_embedding(
diffusion_steps, self.diffusion_step_embed_dim_in)
diffusion_step_embed = swish(self.fc_t1(diffusion_step_embed))
diffusion_step_embed = swish(self.fc_t2(diffusion_step_embed))
# Pass all residual layers
h = x
skip = 0
for n in range(self.num_res_layers):
# Use the output from last residual layer
h, skip_n = self.residual_blocks[n]((h, mel_spectrogram, diffusion_step_embed))
# Accumulate all skip outputs
skip = skip + skip_n
return skip * math.sqrt(1.0 / self.num_res_layers)
class DiffWave(nn.Module):
def __init__(self, in_channels, res_channels, skip_channels, out_channels,
num_res_layers, dilation_cycle,
diffusion_step_embed_dim_in,
diffusion_step_embed_dim_mid,
diffusion_step_embed_dim_out):
super().__init__()
# Initial conv1x1 with relu
self.init_conv = nn.Sequential(Conv(in_channels, res_channels, kernel_size=1), nn.ReLU(inplace=False))
# All residual layers
self.residual_layer = ResidualGroup(res_channels,
skip_channels,
num_res_layers,
dilation_cycle,
diffusion_step_embed_dim_in,
diffusion_step_embed_dim_mid,
diffusion_step_embed_dim_out)
# Final conv1x1 -> relu -> zeroconv1x1
self.final_conv = nn.Sequential(Conv(skip_channels, skip_channels, kernel_size=1),
nn.ReLU(inplace=False), ZeroConv1d(skip_channels, out_channels))
def forward(self, input_data):
x, condition, diffusion_steps = input_data
x = self.init_conv(x).clone()
x = self.residual_layer((x, condition, diffusion_steps))
return self.final_conv(x)
class Generator(nn.Module):
def __init__(self, hparams):
super(Generator, self).__init__()
self.hparams = hparams
self.T = hparams.T
self.eps = hparams.eps
self.noise_scale = hparams.noise_scale
self.reflow_flag = hparams.reflow_flag
if self.reflow_flag:
self.reflow_t_schedule = hparams.reflow_t_schedule
self.t_max_value = hparams.t_max_value
self.sigma_t = lambda t: (1. - t) * hparams.sigma_var
self.generator = DiffWave(in_channels=hparams.in_dim, res_channels=hparams.res_dim, skip_channels=hparams.skip_dim, out_channels=hparams.out_dim,
num_res_layers=hparams.n_res_layers, dilation_cycle=hparams.dilation_cycle,
diffusion_step_embed_dim_in=hparams.diffusion_step_embed_in_dim,
diffusion_step_embed_dim_mid=hparams.diffusion_step_embed_mid_dim,
diffusion_step_embed_dim_out=hparams.diffusion_step_embed_out_dim)
def remove_weight_norm(self):
self.generator.remove_weight_norm()
def forward(self, features, target_features, noise):
if self.reflow_flag:
if self.reflow_t_schedule=='t0': ### distill for t = 0 (k=1)
t = torch.zeros((target_features.shape[0], 1), device=target_features.device) * (self.T - self.eps) + self.eps
elif self.reflow_t_schedule=='t1': ### reverse distill for t=1 (fast embedding)
t = torch.ones((target_features.shape[0], 1), device=target_features.device) * (self.T - self.eps) + self.eps
elif self.reflow_t_schedule=='uniform': ### train new rectified flow with reflow
t = torch.rand((target_features.shape[0], 1), device=target_features.device) * (self.T - self.eps) + self.eps
elif type(self.reflow_t_schedule)==int: ### k > 1 distillation
t = torch.randint(0, self.reflow_t_schedule, (target_features.shape[0], 1), device=target_features.device) * (self.T - eps) / self.reflow_t_schedule + eps
else:
assert False, 'Not implemented'
else:
### standard rectified flow loss
t = torch.rand((target_features.shape[0], 1), device=target_features.device) * (self.T - self.eps) + self.eps
t_expand = t.view(-1, 1, 1).repeat(1, target_features.shape[1], target_features.shape[2])
perturbed_data = t_expand * target_features + (1. - t_expand) * noise
predicted_score = self.generator((perturbed_data, features, t*self.t_max_value))
target_score = target_features - noise
return predicted_score, target_score
@torch.jit.ignore
@torch.no_grad()
def inference(self, features, sampling_method='euler', sampling_steps=1000):
init_noise = torch.randn(features.shape[0], 1, features.shape[-1] * self.hparams.hop_size).to(features.device) * self.hparams.noise_scale
x = init_noise.clone()
shape = x.shape
if sampling_method == 'euler':
print('sampling_method: euler')
dt = 1./sampling_steps
for i in range(sampling_steps):
num_t = i /sampling_steps * (self.T - self.eps) + self.eps
t = torch.ones((shape[0], 1), device=features.device) * num_t
pred = self.generator((x, features, t*999)) ### Copy from models/utils.py
# convert to diffusion models if sampling.sigma_variance > 0.0 while perserving the marginal probability
sigma_t = self.sigma_t(num_t)
pred_sigma = pred + (sigma_t**2)/(2*(self.noise_scale**2)*((1.-num_t)**2)) * (0.5 * num_t * (1.-num_t) * pred - 0.5 * (2.-num_t)*x)
x = x + pred_sigma * dt + sigma_t * np.sqrt(dt) * torch.randn_like(pred_sigma).to(features.device)
elif sampling_method == 'rk45':
print('sampling_method: rk45')
def ode_func(t, x):
x = from_flattened_numpy(x, shape).to(features.device).type(torch.float32)
vec_t = torch.ones((shape[0], 1), device=x.device) * t
drift = self.generator((x, features, vec_t*999))
return to_flattened_numpy(drift)
solution = integrate.solve_ivp(ode_func, (self.eps, self.T), to_flattened_numpy(x),
rtol=self.hparams.ode_tol, atol=self.hparams.ode_tol, method='RK45')
x = torch.tensor(solution.y[:, -1]).reshape(x.shape).to(x.device).type(torch.float32)
predicted_audio = x
return predicted_audio, init_noise