-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtest_pre_a.py
110 lines (89 loc) · 3.82 KB
/
test_pre_a.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
from __future__ import print_function, absolute_import
import argparse
import os.path as osp
import random
import numpy as np
import sys
import torch
from torch import nn
from torch.backends import cudnn
from torch.utils.data import DataLoader
from awb import datasets
from awb import models_pre_a_s1
from awb.evaluators import Evaluator
from awb.utils.data import transforms as T
from awb.utils.data.preprocessor import Preprocessor
from awb.utils.logging import Logger
from awb.utils.serialization import load_checkpoint, save_checkpoint, copy_state_dict
def get_data(name, data_dir, height, width, batch_size, workers):
root = osp.join(data_dir, name)
dataset = datasets.create(name, root)
normalizer = T.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
test_transformer = T.Compose([
T.Resize((height, width), interpolation=3),
T.ToTensor(),
normalizer
])
test_loader = DataLoader(
Preprocessor(list(set(dataset.query) | set(dataset.gallery)),
root=dataset.images_dir, transform=test_transformer),
batch_size=batch_size, num_workers=workers,
shuffle=False, pin_memory=True)
return dataset, test_loader
def main():
args = parser.parse_args()
if args.seed is not None:
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
main_worker(args)
def main_worker(args):
cudnn.benchmark = True
log_dir = osp.dirname(args.resume)
sys.stdout = Logger(osp.join(log_dir, 'log_test.txt'))
print("==========\nArgs:{}\n==========".format(args))
# Create data loaders
dataset_target, test_loader_target = \
get_data(args.dataset_target, args.data_dir, args.height,
args.width, args.batch_size, args.workers)
# Create model
model = models_pre_a_s1.create(args.arch, pretrained=False, num_features=args.features, dropout=args.dropout, num_classes=0)
model.cuda()
model = nn.DataParallel(model)
# Load from checkpoint
checkpoint = load_checkpoint(args.resume)
copy_state_dict(checkpoint['state_dict'], model)
start_epoch = checkpoint['epoch']
best_mAP = checkpoint['best_mAP']
print("=> Checkpoint of epoch {} best mAP {:.1%}".format(start_epoch, best_mAP))
# Evaluator
evaluator = Evaluator(model)
print("Test on the target domain of {}:".format(args.dataset_target))
evaluator.evaluate(test_loader_target, dataset_target.query, dataset_target.gallery, cmc_flag=True, rerank=args.rerank)
return
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Testing the model")
# data
parser.add_argument('-dt', '--dataset-target', type=str, required=True,
choices=datasets.names())
parser.add_argument('-b', '--batch-size', type=int, default=256)
parser.add_argument('-j', '--workers', type=int, default=4)
parser.add_argument('--height', type=int, default=256, help="input height")
parser.add_argument('--width', type=int, default=128, help="input width")
# model
parser.add_argument('-a', '--arch', type=str, required=True,
choices=models_pre_a_s1.names())
parser.add_argument('--features', type=int, default=0)
parser.add_argument('--dropout', type=float, default=0)
# testing configs
parser.add_argument('--resume', type=str, required=True, metavar='PATH')
parser.add_argument('--rerank', action='store_true',
help="evaluation only")
parser.add_argument('--seed', type=int, default=1)
# path
working_dir = osp.dirname(osp.abspath(__file__))
parser.add_argument('--data-dir', type=str, metavar='PATH',
default=osp.join(working_dir, 'data'))
main()