-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathmain.py
148 lines (118 loc) · 5.32 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
#!/usr/bin/env python37
# -*- coding: utf-8 -*-
"""
Created on 19 Sep, 2019
@author: wangshuo
"""
import os
import time
import random
import argparse
import pickle
import numpy as np
from tqdm import tqdm
from os.path import join
import torch
from torch import nn
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
from torch.optim.lr_scheduler import StepLR
from torch.autograd import Variable
from torch.backends import cudnn
import metric
from utils import collate_fn
from narm import NARM
from dataset import load_data, RecSysDataset
parser = argparse.ArgumentParser()
parser.add_argument('--dataset_path', default='datasets/diginetica/', help='dataset directory path: datasets/diginetica/yoochoose1_4/yoochoose1_64')
parser.add_argument('--batch_size', type=int, default=512, help='input batch size')
parser.add_argument('--hidden_size', type=int, default=100, help='hidden state size of gru module')
parser.add_argument('--embed_dim', type=int, default=50, help='the dimension of item embedding')
parser.add_argument('--epoch', type=int, default=100, help='the number of epochs to train for')
parser.add_argument('--lr', type=float, default=0.001, help='learning rate')
parser.add_argument('--lr_dc', type=float, default=0.1, help='learning rate decay rate')
parser.add_argument('--lr_dc_step', type=int, default=80, help='the number of steps after which the learning rate decay')
parser.add_argument('--test', action='store_true', help='test')
parser.add_argument('--topk', type=int, default=20, help='number of top score items selected for calculating recall and mrr metrics')
parser.add_argument('--valid_portion', type=float, default=0.1, help='split the portion of training set as validation set')
args = parser.parse_args()
print(args)
here = os.path.dirname(os.path.abspath(__file__))
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def main():
print('Loading data...')
train, valid, test = load_data(args.dataset_path, valid_portion=args.valid_portion)
train_data = RecSysDataset(train)
valid_data = RecSysDataset(valid)
test_data = RecSysDataset(test)
train_loader = DataLoader(train_data, batch_size = args.batch_size, shuffle = True, collate_fn = collate_fn)
valid_loader = DataLoader(valid_data, batch_size = args.batch_size, shuffle = False, collate_fn = collate_fn)
test_loader = DataLoader(test_data, batch_size = args.batch_size, shuffle = False, collate_fn = collate_fn)
if args.dataset_path.split('/')[-2] == 'diginetica':
n_items = 43098
elif args.dataset_path.split('/')[-2] in ['yoochoose1_64', 'yoochoose1_4']:
n_items = 37484
else:
raise Exception('Unknown Dataset!')
model = NARM(n_items, args.hidden_size, args.embed_dim, args.batch_size).to(device)
if args.test:
ckpt = torch.load('latest_checkpoint.pth.tar')
model.load_state_dict(ckpt['state_dict'])
recall, mrr = validate(test_loader, model)
print("Test: Recall@{}: {:.4f}, MRR@{}: {:.4f}".format(args.topk, recall, args.topk, mrr))
return
optimizer = optim.Adam(model.parameters(), args.lr)
criterion = nn.CrossEntropyLoss()
scheduler = StepLR(optimizer, step_size = args.lr_dc_step, gamma = args.lr_dc)
for epoch in tqdm(range(args.epoch)):
# train for one epoch
scheduler.step(epoch = epoch)
trainForEpoch(train_loader, model, optimizer, epoch, args.epoch, criterion, log_aggr = 200)
recall, mrr = validate(valid_loader, model)
print('Epoch {} validation: Recall@{}: {:.4f}, MRR@{}: {:.4f} \n'.format(epoch, args.topk, recall, args.topk, mrr))
# store best loss and save a model checkpoint
ckpt_dict = {
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict()
}
torch.save(ckpt_dict, 'latest_checkpoint.pth.tar')
def trainForEpoch(train_loader, model, optimizer, epoch, num_epochs, criterion, log_aggr=1):
model.train()
sum_epoch_loss = 0
start = time.time()
for i, (seq, target, lens) in tqdm(enumerate(train_loader), total=len(train_loader)):
seq = seq.to(device)
target = target.to(device)
optimizer.zero_grad()
outputs = model(seq, lens)
loss = criterion(outputs, target)
loss.backward()
optimizer.step()
loss_val = loss.item()
sum_epoch_loss += loss_val
iter_num = epoch * len(train_loader) + i + 1
if i % log_aggr == 0:
print('[TRAIN] epoch %d/%d batch loss: %.4f (avg %.4f) (%.2f im/s)'
% (epoch + 1, num_epochs, loss_val, sum_epoch_loss / (i + 1),
len(seq) / (time.time() - start)))
start = time.time()
def validate(valid_loader, model):
model.eval()
recalls = []
mrrs = []
with torch.no_grad():
for seq, target, lens in tqdm(valid_loader):
seq = seq.to(device)
target = target.to(device)
outputs = model(seq, lens)
logits = F.softmax(outputs, dim = 1)
recall, mrr = metric.evaluate(logits, target, k = args.topk)
recalls.append(recall)
mrrs.append(mrr)
mean_recall = np.mean(recalls)
mean_mrr = np.mean(mrrs)
return mean_recall, mean_mrr
if __name__ == '__main__':
main()