-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtexture_synthesis.py
167 lines (122 loc) · 4.97 KB
/
texture_synthesis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
"""
Author: Xiaohui Zhang, Siyuan Yin
Synthesize an image from a given image using VGG19 model
"""
import torch
from torchvision import transforms
import cv2
from VGG19 import get_vgg19_model,rescale_weights
import torch
from tqdm import tqdm
import torchvision.transforms.functional as TF
import numpy as np
import argparse
def read_image(path):
transform = transforms.Compose([
transforms.ToTensor(),
# transforms.Normalize(mean=[0.485,0.456,0.406],
# std=[0.229,0.224,0.225])
])
image = cv2.imread(path)
#转化成RGB
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = transform(image)
# save_image(image, "gt.jpg")
image = image.unsqueeze(0)
return image
def save_image(tensor, file_name):
img_pil = TF.to_pil_image(tensor,mode='RGB')
img_pil.save(file_name)
def get_gram(features_maps):
# each element of feature maps is [batch_size, channel, height, width]
for key in features_maps:
# remove the batch_size dimension and convert it into [channel, height * width]
features_maps[key] = features_maps[key].squeeze(0).view(features_maps[key].size(1), -1)
gram_matrix = dict()
# compute the gram matrix
for key in features_maps:
F = features_maps[key]
N,M = F.shape
G = torch.mm(F, F.t())/M
gram_matrix[key] = G
return gram_matrix
def gram_mse_loss(syn,gt,feature_selection=['conv1_1','conv2_1','conv3_1','conv4_1']):
total_loss = 0
for key in syn:
if key not in feature_selection:
continue
N = syn[key].shape[0]
loss = torch.sum((syn[key]-gt[key])**2)/N**2
total_loss += loss
return total_loss
def synthesis(model,gt, args):
# for param in model.parameters():
# param.requires_grad = False
device = args.device
model.to(device)
gt = gt.to(device)
syn = torch.rand(gt.shape)
syn = syn.to(device).requires_grad_(True)
model(gt)
gt_grams = get_gram(model.features_maps)
epoch = args.epoch
if args.optimizer == 'Adam':
optimizer = torch.optim.Adam([syn], lr=args.lr)
for i in tqdm(range(epoch)):
# print(tar.grad)
optimizer.zero_grad()
model(syn)
syn_grams = get_gram(model.features_maps)
loss = gram_mse_loss(syn_grams,gt_grams,args.feature_selection)
# model.backward()
loss.backward(retain_graph=True)
optimizer.step()
# 将syn的值限制在0-255之间
syn.data = torch.clamp(syn.data,0,1)
# print("epoch: {}, loss: {}".format(i, loss.item()),flush=True)
if (i+1)%100 == 0:
save_image(syn.squeeze(0), "epoch_{}.jpg".format(i+1))
elif args.optimizer == 'LBFGS':
optimizer = torch.optim.LBFGS([syn], lr=args.lr)
def closure():
optimizer.zero_grad()
model(syn)
syn_grams = get_gram(model.features_maps)
loss = gram_mse_loss(syn_grams,gt_grams,args.feature_selection)
# model.backward()
loss.backward(retain_graph=True)
return loss
for i in tqdm(range(epoch)):
# print(tar.grad)
optimizer.step(closure)
# 将syn的值限制在0-255之间
syn.data = torch.clamp(syn.data,0,1)
# print("epoch: {}, loss: {}".format(i, loss.item()),flush=True)
if (i+1)%100 == 0:
save_image(syn.squeeze(0), "epoch_{}.jpg".format(i+1))
else:
raise NotImplementedError
save_image(syn.squeeze(0), args.save_path)
def main():
parser = argparse.ArgumentParser(description='PyTorch VGG19 Training')
parser.add_argument('--model', default='vgg19', type=str, help='model name')
parser.add_argument('--gt_path', default='leaf.jpg', type=str, help='path to ground truth image')
parser.add_argument('--pool', default='avg', type=str, help='pooling method')
parser.add_argument('--rescale', default=True, type=bool, help='rescale weights or not')
parser.add_argument('--feature_selection', default=['conv1_1','conv2_1','conv3_1','conv4_1'], type=list, help='feature selection')
parser.add_argument('--optimizer', default='Adam', type=str, help='optimize method')
parser.add_argument('--epoch', default=1000, type=int, help='epoch')
parser.add_argument('--lr', default=0.1, type=float, help='learning rate')
parser.add_argument('--device', default='cuda:0', type=str, help='device')
parser.add_argument('--save_path', default='result.jpg', type=str, help='save path')
args = parser.parse_args()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
args.device = device
path = 'imgs/'+args.gt_path
model = get_vgg19_model(pool=args.pool)
gt = read_image(path)
if args.rescale:
rescale_weights(model,[gt],device)
synthesis(model, gt, args)
if __name__ == '__main__':
main()