-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathspm_mb_appearance.m
675 lines (612 loc) · 23.3 KB
/
spm_mb_appearance.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
function varargout = spm_mb_appearance(varargin) % Appearance model
%
% FORMAT chan = spm_mb_appearance('inu_basis',T,df,Mat,reg,samp)
% FORMAT [inu,ll] = spm_mb_appearance('inu_field',T,chan,d,varargin)
% FORMAT z = spm_mb_appearance('responsibility',m,b,W,n,f,mu,msk_chn)
% FORMAT dat = spm_mb_appearance('restart',dat,sett)
% FORMAT [z,dat] = spm_mb_appearance('update',dat,mu,sett)
% FORMAT dat = spm_mb_appearance('update_prior',dat,sett)
% FORMAT = spm_mb_appearance('debug_show',img,img_is,modality,fig_title,do)
%__________________________________________________________________________
% Copyright (C) 2019-2020 Wellcome Centre for Human Neuroimaging
% Mikael Brudfors, John Ashburner & Yael Balbastre
% $Id: spm_mb_appearance.m 8086 2021-04-01 09:13:20Z john $
[varargout{1:nargout}] = spm_subfun(localfunctions,varargin{:});
%==========================================================================
%==========================================================================
function [dat,sett] = restart(dat,sett)
% Allow a restart of the GMM
for n=1:numel(dat)
if isfield(dat(n).model,'gmm')
p = dat(n).model.gmm.pop;
same = ~all(sum(diff(sett.gmm(p).pr{1},1,2).^2,1));
if same
% Intensity priors are identical for all clusters
% so need to break the symmetry.
% Increase variance of Gaussians and make the means
% more similar to each other.
dat(n).model.gmm.W = dat(n).model.gmm.W*0.1;
dat(n).model.gmm.m = bsxfun(@plus, dat(n).model.gmm.m*0.1,...
mean(dat(n).model.gmm.m,2)*0.9);
dat(n).model.gmm.Alpha = dat(n).model.gmm.Alpha*0+eps;
else
% Set all GMM parameters to be identical so the
% next GMM fit restarts everything at the current
% priors. Symmetry already broken with intensity
% priors.
[M,K1] = size(dat(n).model.gmm.m);
dat(n).model.gmm.m = ones(M,K1)*1000;
dat(n).model.gmm.b = ones(1,K1);
dat(n).model.gmm.W = repmat(eye(M,M)/1000,[1 1 K1]);
dat(n).model.gmm.nu = ones(1,K1)*(M+1);
dat(n).model.gmm.Alpha = dat(n).model.gmm.Alpha*0+eps;
end
end
end
%==========================================================================
%==========================================================================
function [Z,lx] = responsibility(m,b,W,nu, mg_ix, mu,mf,vf)
% Compute responsibilities.
%
% FORMAT z = responsibility(m,b,W,nu, mg_ix, mu,mf,vf)
% m - GMM Means
% b - GMM Mean d.f.
% W - GMM Scale matrices
% n - GMM Scale d.f.
% mg_ix - GMM indices
% mu - Deformed and template
% mf - Expectation of INU-corrected observed image in matrix form [nbvox nbchannel]
% vf - Variance of INU-corrected observed image in matrix form [nbvox nbchannel]
% Z - Image of responsibilities [nbvox K]
[Z,lx] = spm_gmmlib('resp',m,b,W,nu, uint64(mg_ix),mu, mf,vf, uint64([1 1 1]));
%==========================================================================
%==========================================================================
function [dat,Z] = update(dat,mu,sett)
% Update appearance model for a single subject (GMM & bias field)
%
% FORMAT [dat,Z] = update(dat,mu,sett)
% dat - Structure holding data for a single subject
% mu - Log template
% sett - Structure of settings
% Parse function settings
gmm = dat.model.gmm;
mg_ix = sett.gmm(gmm.pop).mg_ix;
nit_gmm = sett.gmm(gmm.pop).nit_gmm;
nit_gmm_miss = sett.gmm(gmm.pop).nit_gmm_miss;
nit_appear = sett.gmm(gmm.pop).nit_appear;
tol_gmm = sett.gmm(gmm.pop).tol_gmm;
C = sett.gmm(gmm.pop).C;
inu_reg = sett.gmm(gmm.pop).inu_reg;
Mat = dat.Mat;
df = dat.dm;
ds = [size(mu) 1 1];
ds = ds(1:3);
% For visual debugging (disable/enable in debug_show())
debug_show(mu, 'template_k1');
% Get image data
samp1 = dat.samp;
samp2 = gmm.samp;
f0 = subsample(spm_mb_io('get_image',gmm),samp1);
if isa(dat.lab,'struct')
label = spm_mb_io('get_data', dat.lab.f);
label = uint8(subsample(label,samp1));
else
label = [];
end
% Intensity priors
pr = sett.gmm(gmm.pop).pr;
% GMM posterior
cluster = {gmm.m,gmm.b,gmm.W,gmm.nu,gmm.gam,gmm.Alpha};
% Bias field related
T = gmm.T;
if isfield(gmm,'Sig')
Sig = gmm.Sig;
else
Sig = cell(size(T));
end
do_inu = ~cellfun(@isempty,T);
ind = sample_ind(ds,samp2);
[msk,nvox] = data_mask(f0,mu,samp2);
if any(do_inu)
chan = inu_basis(T,df,Mat,inu_reg,samp1.*samp2);
[llinu,mf,vf] = inu_recon(f0(ind{:},:),msk,chan,T,Sig);
lxb = sum(llinu(:),'double');
else
mf = f0(ind{:},:);
vf = zeros(size(mf),'single');
lxb = 0;
end
lbs = -Inf;
% For visual debugging (disable/enable in debug_show())
debug_show(mf, 'observed', gmm.modality);
for it_appear=1:nit_appear
[cluster,lb] = spm_mb_gmm(mf,vf, cluster, pr, uint64(mg_ix), mu, label, ...
samp2, nit_gmm, nvox*tol_gmm, nit_gmm_miss, nvox*tol_gmm*0.1);
lnP = bsxfun(@minus, psi(cluster{6}), psi(sum(cluster{6},1)));
if ~isempty(lnP), lnP(1,:) = 0; end
lx = lb.X+lb.P+lb.Alpha;
lbso = lbs;
lbs = lb.mu+lb.A+lx+lxb;
%fprintf(' %8.4f', -lbs/nvox);
if (it_appear==nit_appear) || (lbs-lbso < tol_gmm*nvox)
% Finished
break
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Update bias field parameters
% This computes the derivatives of the negative logarithm of the
% joint probability distribution.
% The uncertainty with which the INU is estimated could be
% accounted for by extending the variational Bayes framework
% to account for the estimation of the INU. This could use:
% E[f \exp(b)] = f \exp(\mu_b+\sigma^2_b/2)
% Var[f \exp(b)] = f^2 \exp(2 \mu_b + \sigma^2_b) (\exp(\sigma^2_b)-1)
%------------------------------------------------------------
if any(do_inu)
for c=1:C % Loop over channels
if isempty(T{c}), continue; end
% Compute gradient and Hessian
d3 = numel(T{c}); % Number of DCT parameters
H = zeros(d3,d3);
gr = zeros(d3,1);
B1 = double(chan(c).B1);
B2 = double(chan(c).B2);
B3 = double(chan(c).B3);
lx = 0;
for z=1:size(mf,3)
if isempty(label)
labz = [];
else
labz = label(ind{1:2},ind{3}(z));
end
[gr_im,H_im,lxt] = spm_gmmlib('inugrads', cluster{1:5}, uint64(mg_ix),mu(ind{1:2},ind{3}(z),:),...
mf(:,:,z,:),vf(:,:,z,:), uint64([1 1 1]), labz,lnP, uint64(c));
lx = lx + lxt;
b3 = B3(z,:)';
gr = gr + kron(b3,spm_krutil(double(gr_im),B1,B2,0));
H = H + kron(b3*b3',spm_krutil(double(H_im),B1,B2,1));
end
clear gr_im H_im b3
% Gauss-Newton update of bias field parameters
Sig{c} = 1./diag(H + chan(c).L); % Diagonal approximation
T{c} = T{c} - reshape((H + chan(c).L)\(gr + chan(c).L*T{c}(:)),size(T{c}));
clear H gr
% Compute new expectations (only for channel c)
[llinu(:,c),mf(:,:,:,c),vf(:,:,:,c)] = inu_recon(f0(ind{:},c),msk,chan(c),T(c),Sig(c));
lxb = sum(llinu(:),'double');
end
end
end
% Update dat
lbs = lx+lxb+lb.mu+lb.A+lb.Alpha;
gmm.T = T;
gmm.Sig = Sig;
gmm.m = cluster{1};
gmm.b = cluster{2};
gmm.W = cluster{3};
gmm.nu = cluster{4};
gmm.gam = cluster{5};
gmm.Alpha = cluster{6};
gmm.lb = lb;
if nargout > 1
[msk,nvox] = data_mask(f0,mu);
% Compute full-sized responsibilities on original data
if any(do_inu) % Bias correct
chan = inu_basis(T,df,Mat,inu_reg,samp1);
[llinu,mf,vf] = inu_recon(f0,msk,chan,T,Sig);
lxb = sum(llinu(:));
else
mf = f0;
vf = zeros(size(mf),'single');
lxb = 0;
end
[Z,lx] = spm_gmmlib('resp',cluster{1:5}, uint64(mg_ix),mu, mf,vf, uint64(samp2), label,lnP);
lbs = lx+lxb+lb.mu+lb.A+lb.Alpha;
end
% For visual debugging (disable/enable in debug_show())
debug_show(Z,'responsibilities');
% Assign
dat.E(1) = -lbs;
dat.nvox = nvox;
dat.model.gmm = gmm;
%==========================================================================
%==========================================================================
function sett = update_prior(dat, sett)
if isempty(sett.gmm), return; end
% Get population indices
code = zeros(numel(dat),1);
for n=1:numel(dat)
if isfield(dat(n).model,'gmm')
code(n) = dat(n).model.gmm.pop;
end
end
for p=1:numel(sett.gmm) % Loop over populations
if iscell(sett.gmm(p).hyperpriors)
index = find(code==p);
N = numel(index);
pr = sett.gmm(p).pr;
% Get all posteriors
po = cell(1,N);
nlab = 0;
for n=1:N
n1 = index(n);
po{n}{1} = dat(n1).model.gmm.m;
po{n}{2} = dat(n1).model.gmm.b;
po{n}{3} = dat(n1).model.gmm.W;
po{n}{4} = dat(n1).model.gmm.nu;
if ~isempty(dat(n1).model.gmm.Alpha), nlab = nlab + 1; end
end
% Update prior
hp = sett.gmm(p).hyperpriors;
sett.gmm(p).pr = spm_mb_gmm('updatehyperpars',po,pr,hp{:});
% Attempt to increase stability by avoiding singular precision matrices
W = sett.gmm(p).pr{3};
for k=1:size(W,3)
S = inv(W(:,:,k));
W(:,:,k) = inv(S*(1-1e-9) + 1e-9*mean(diag(S))*eye(size(S)));
end
sett.gmm(p).pr{3} = W;
%% Update INU regularisation. Disabled because it under-regularises
%ss_inu0 = zeros(1,size(pr{1},1));
%ss_inu1 = zeros(1,size(pr{1},1));
%for n=1:N
% [tr,D] = inu_reg_suffstat(dat(n1).model.gmm.T,dat(n1).model.gmm.Sigma,dat(n1).df,dat(n1).Mat);
% ss_inu1 = ss_inu1 + tr;
% ss_inu0 = ss_inu0 + D;
%end
%sett.gmm(p).inu_reg = ss_inu1./ss_inu2;
% Dirichlet hyperpriors
if nlab>0
lb = 0;
K1 = size(sett.gmm(p).pr{1},2);
Alpha = zeros(255,nlab);
Alpha0 = zeros(256,K1);
for k=1:K1
n2 = 1;
for n=1:N
n1 = index(n);
if ~isempty(dat(n1).model.gmm.Alpha)
Alpha(:,n2) = dat(n1).model.gmm.Alpha(2:end,k);
n2 = n2 + 1;
end
end
[Alpha0(2:end,k),lbk] = spm_mb_gmm('dirichlet_hyperparameters',Alpha);
lb = lb + lbk;
end
sett.gmm(p).pr{6} = Alpha0;
else
sett.gmm(p).pr{6} = [];
end
end
end
%==========================================================================
%==========================================================================
function [tr,D] = inu_reg_suffstat(T,Sig,df,Mat)
vs = sqrt(sum(Mat(1:3,1:3).^2,1));
C = numel(T);
tr = zeros(1,C);
D = zeros(1,C);
for c=1:numel(T)
d3 = size(T{c});
D(c) = prod(d3); % Should really subtract 1 because of the DC.
if prod(d3)>0
L = inu_regulariser(df,d3,vs);
t = T{c}(:);
S = Sig{c};
if size(S,2)==1
% Diagonal approximation
tr(c) = sum(S.*t.^2) + sum(S.*diag(L));
else
tr(c) = t'*L*t + sum(sum(S.*L));
end
end
end
%==========================================================================
%==========================================================================
function [msk,nvox] = data_mask(mf,mu,samp2)
if nargin>=3
ind = sample_ind(size(mf),samp2);
else
ind = {':',':',':'};
end
msk = isfinite(mu(ind{:},1));
if nargout>=2
mskf = false(size(msk));
for i=1:size(mf,4)
mskf = mskf | isfinite(mf(ind{:},i));
end
nvox = sum(mskf(:) & msk(:));
end
%==========================================================================
%==========================================================================
function [of,d] = subsample(f,samp)
% Subsample a multichannel volume.
%
% FORMAT [of,d,scl_samp] = subsample(f,samp);
% f - Original volume
% samp - Sampling distances in voxels
% of - Resampled volume
% d - Output dimensions
if all(samp==1)
of = f;
d = [size(f,1) size(f,2) size(f,3)];
else
% Input image properties
df = [size(f) 1];
df = df(1:3);
ind = sample_ind(df,samp);
d = cellfun(@length,ind); % New dimensions
of = f(ind{:},:,:);
end
%==========================================================================
%==========================================================================
function ind = sample_ind(df,samp)
% Indices for sampling
% FORMAT ind = sample_ind(df,samp)
% df - image dimensions
% samp - spacing along the three dimensions
% ind - indices
df = [df(:)' 1 1];
df = df(1:3);
samp = [samp(:)' 1 1];
samp = samp(1:3);
sk = max([1 1 1],samp);
ind = {round(1:sk(1):df(1)), round(1:sk(2):df(2)), round(1:sk(3):df(3))};
%==========================================================================
%==========================================================================
function chan = inu_basis(T,df,Mat,reg,samp)
if nargin<5, samp = 0; end
if nargin<4, reg = ones(1,numel(T)); end
cl = cell(1, numel(T));
chan = struct('L', cl, 'B1',cl, 'B2',cl, 'B3',cl);
ind = sample_ind(df,samp);
vs = sqrt(sum(Mat(1:3,1:3).^2,1));
for c=1:numel(T)
d3 = [size(T{c}) 1];
d3 = d3(1:3);
% Regulariser
chan(c).L = reg(c)*inu_regulariser(df,d3,vs);
% Basis functions for bias correction
chan(c).B1 = spm_dctmtx(df(1),d3(1),ind{1});
chan(c).B2 = spm_dctmtx(df(2),d3(2),ind{2});
chan(c).B3 = spm_dctmtx(df(3),d3(3),ind{3});
end
%==========================================================================
%==========================================================================
function L = inu_regulariser(df,d3,vs)
% Bending energy regulariser (precision matrix)
kx = (pi*((1:d3(1))'-1)/df(1)/vs(1)).^2;
ky = (pi*((1:d3(2))'-1)/df(2)/vs(2)).^2;
kz = (pi*((1:d3(3))'-1)/df(3)/vs(3)).^2;
L = (kron(kz.^2,kron(ky.^0,kx.^0)) + kron(kz.^0,kron(ky.^2,kx.^0)) + kron(kz.^0,kron(ky.^0,kx.^2)) +...
2*(kron(kz.^1,kron(ky.^1,kx.^0)) + kron(kz.^1,kron(ky.^0,kx.^1)) + kron(kz.^0,kron(ky.^1,kx.^1))) );
L = diag(max(L,0));
%==========================================================================
%==========================================================================
function [inu,ll] = inu_field(T,chan)
d = [size(chan(1).B1,1) size(chan(1).B2,1) size(chan(1).B3,1)];
nz = d(3);
C = numel(T);
cr = 1:C;
% Compute full bias field (for all channels)
inu = zeros([d C],'single');
ll = zeros(1,C);
for c=cr
t = double(T{c});
ll(c) = -0.5*t(:)'*chan(c).L*t(:);
for z=1:nz
inu_c = inu_transform(chan(c).B1,chan(c).B2,chan(c).B3(z,:),T{c});
inu(:,:,z,c) = single(exp(inu_c));
end
end
%==========================================================================
%==========================================================================
function [ll,mf,vf] = inu_recon(f,msk,chan,T,Sig)
% INU reconstruction
d = [size(chan(1).B1,1) size(chan(1).B2,1) size(chan(1).B3,1)];
nz = d(3);
C = numel(T);
if nargin<5 || isempty(Sig), Sig = cell(1,C); end
if nargout>1, mf = zeros([d C],'single'); end
if nargout>2, vf = zeros([d C],'single'); end
ll = zeros(2,C);
for c=1:C
t = T{c};
dt = [size(t,1) size(t,2) size(t,3)];
S = Sig{c};
if ~isempty(t)
B1 = chan(c).B1;
B2 = chan(c).B2;
B3 = chan(c).B3;
L = chan(c).L;
% ln p(t|L). Note that there's no regularisation for the DC component, so to avoid dealing with
% a singular matrix, only L(2:end,2:end) is used for computing the determinant.
ll(1,c) = -0.5*t(:)'*L*t(:) + sum(log(diag(chol(L(2:end,2:end)))),'double') - 0.5*(size(L,1)-1)*log(2*pi);
%% Use BIC to account for having no regularisation on the DC component.
%% Need to check that this is the right thing to do.
%ll(1,c) = ll(1,c) - 0.5*log(sum(sum(sum(isfinite(f(:,:,:,c))))));
if ~isempty(S)
approx = 0;
if size(S,2)==1 % S is the diagonal to save memory
s = S;
approx = 0;
end
if approx<0 % Full computation
C = chol(S);
% -E[ln q(t)]: 0.5*log(det(S)) + 0.5*D*log(2*pi) + 0.5*trace(S\S)
ll(1,c) = ll(1,c) + sum(log(diag(C)),'double') + 0.5*size(C,1) + 0.5*size(C,1)*log(2*pi);
% make it E[ln p(t|L)] instead of just p(t|L)
ll(1,c) = ll(1,c) - 0.5*sum(sum(L.*S,'double'),'double');
C = reshape(C',[dt size(C,1)]);
else
if approx==0 % Diagonal approximation
% -E[ln q(t)]
if size(S,2) == size(S,1)
s = diag(S);
end
ll(1,c) = ll(1,c) + 0.5*sum(log(s),'double') + 0.5*size(s,1) + 0.5*size(s,1)*log(2*pi);
ll(1,c) = ll(1,c) - 0.5*sum(diag(L).*s,'double'); % make it E[ln p(t|L)]
U = zeros([0 0 0 0]);
s = reshape(s,dt);
else
% -E[ln q(t)]
ll(1,c) = ll(1,c) + sum(log(diag(chol(S))),'double') + 0.5*size(S,1) + 0.5*size(S,1)*log(2*pi);
ll(1,c) = ll(1,c) - 0.5*sum(sum(L.*S,'double'),'double'); % make it E[ln p(t|L)]
% Approximate with a few eigenmodes + diagonal
approx = min(approx,size(S,2)-1);
[V,D] = eigs(double(S),approx);
U = single(V*diag(sqrt(diag(D))));
s = reshape(single(diag(S - U*U')),dt);
U = reshape(U,[dt approx]);
end
% Basis functions for diagonal (part of the ) approximation
B1s = B1.^2;
B2s = B2.^2;
B3s = B3.^2;
end
for z=1:nz % Loop over slices
%% Symbolic workings for E[f.*exp(x)] & Var[f.*exp(x)]
% syms m x em1 real
% syms f S positive
% ex = simplify(int(exp(x)*exp(-0.5*(x-m)^2/S)/sqrt(2*pi*S),x,-Inf,Inf),1000)
%% E[f.*exp(x)] = f.*exp(m+S/2)
% v = simplify(int(f^2*(exp(x)-ex)^2*exp(-0.5*(x-m)^2/S)/sqrt(2*pi*S),x,-Inf,Inf),1000)
%% Var[f.*exp(x)] = f.^2.*exp(2*m).*exp(S).*(exp(S)-1)
if approx<0
vl = single(0);
for ii=1:size(C,4)
vl = vl + inu_transform(B1,B2,B3(z,:),C(:,:,:,ii)).^2;
end
else
% Approximate voxel-wise variance estimates from covariance matrix S
vl = inu_transform(B1s,B2s,B3s(z,:),s); % Diagonal approximation
for ii=1:size(U,4)
vl = vl + inu_transform(B1,B2,B3(z,:),U(:,:,:,ii)).^2;
end
end
ml = inu_transform(B1,B2,B3(z,:),t);
if ~isempty(msk)
mskz = msk(:,:,z);
else
mskz = true(size(f,1),size(f,2));
end
fz = f(:,:,z,c);
ll(2,c) = ll(2,c) + sum(ml(isfinite(fz(:)) & mskz(:)),'double');
if nargout>1, mf(:,:,z,c) = fz.*(exp(ml + vl/2)); end
if nargout>2, vf(:,:,z,c) = fz.^2.*exp(2*ml + vl).*(exp(vl) - 1); end
end
else
for z=1:nz % Loop over slices
if ~isempty(msk)
mskz = msk(:,:,z);
else
mskz = true(size(f,1),size(f,2));
end
fz = f(:,:,z,c);
ml = inu_transform(B1,B2,B3(z,:),t);
ll(2,c) = ll(2,c) + sum(ml(isfinite(fz(:)) & mskz(:)),'double');
if nargout>1, mf(:,:,z,c) = fz.*exp(ml); end
end
end
else
if nargout>1, mf(:,:,:,c) = f(:,:,:,c); end
end
end
%==========================================================================
%==========================================================================
function t = inu_transform(B1,B2,B3,T)
% Create an image-space log bias field from its basis function encoding.
%
% FORMAT t = inu_transform(B1,B2,B3,T)
% B1 - x-dim DCT basis [nx kx]
% B2 - y-dim DCT basis [ny ky]
% B3 - z-dim DCT basis [nz kz]
% T - DCT encoding of the log bias field [kx ky kz]
% t - Reconstructed log bias field [nx ny nz]
if ~isempty(T)
d2 = [size(T) 1];
t1 = reshape(reshape(T, d2(1)*d2(2),d2(3))*B3', d2(1), d2(2));
t = B1*t1*B2';
else
t = zeros(size(B1,1),size(B2,1));
end
%==========================================================================
%==========================================================================
function debug_show(img,img_is,modality,fig_title,do_show)
% FORMAT debug_show(img,img_is,modality,fig_title,do_show)
%
% Show 4D image, can be (img_is):
% * 'observed' : Observed image data (if multi-channel, shows only first).
% * 'responsibilities' : Tissue responsibilities.
% * 'template_k1' : Tissue template with K + 1 classes.
% * 'template' : Tissue template with K classes.
if nargin < 2, img_is = 'observed'; end
if nargin < 3, modality = 1; end
if nargin < 4, fig_title = ''; end
if nargin < 5, do_show = false; end
if ~do_show || ~any(strcmpi({'observed','responsibilities','template_k1','template'},img_is))
return;
end
% Create/find figure
f = findobj('Type', 'Figure', 'Name', img_is);
if isempty(f)
f = figure('Name', img_is, 'NumberTitle', 'off');
end
set(0, 'CurrentFigure', f);
clf(f);
% Image type specific
if strcmp(img_is,'responsibilities')
img = cat(4,img,1 - sum(img,4));
elseif strcmp(img_is,'observed')
c = 1; % Channel to show
img = img(:,:,:,c);
elseif strcmp(img_is,'template')
img = spm_mb_classes('template_k1',img,[],4);
end
clim = [-Inf Inf];
if modality == 2
clim = [1000 1100]; % CT scan
end
% What slice index (ix) to show
dm = [size(img) 1 1 1];
ix = round(0.5*dm(1:3));
% Colormap
if strcmp(img_is,'observed')
colormap('gray')
else
num_colors = dm(4) + 1;
colormap(hsv(num_colors))
end
% Axis z
img1 = img(:,:,ix(3),:);
if ~strcmp(img_is,'observed')
msk = any(~isfinite(img1),4);
[~,img1] = max(img1,[],4);
img1(msk) = num_colors;
end
subplot(131)
imagesc(img1,clim); axis off;
% Axis y
img2 = img(:,ix(2),:,:);
if ~strcmp(img_is,'observed')
msk = any(~isfinite(img2),4);
[~,img2] = max(img2,[],4);
img2(msk) = num_colors;
end
img2 = squeeze(img2);
subplot(132)
imagesc(img2,clim); axis off;
title(fig_title)
% Axis x
img3 = img(ix(1),:,:,:);
if ~strcmp(img_is,'observed')
msk = any(~isfinite(img3),4);
[~,img3] = max(img3,[],4);
img3(msk) = num_colors;
end
img3 = squeeze(img3);
subplot(133)
imagesc(img3,clim); axis off;
% Draw
drawnow
%==========================================================================