forked from 360ZMEM/USV-AUV-colab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtd3.py
196 lines (174 loc) · 7.01 KB
/
td3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import copy
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import random
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# DDPG
class PolicyNet(torch.nn.Module):
def __init__(self, state_dim, hidden_dim, action_dim):
super(PolicyNet, self).__init__()
self.fc1 = torch.nn.Linear(state_dim, hidden_dim)
self.fc2 = torch.nn.Linear(hidden_dim, hidden_dim)
self.fc3 = torch.nn.Linear(hidden_dim, hidden_dim)
self.fc4 = torch.nn.Linear(hidden_dim, action_dim)
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = F.relu(self.fc3(x))
return torch.tanh(self.fc4(x))
class QValueNet(torch.nn.Module):
def __init__(self, state_dim, hidden_dim, action_dim):
super(QValueNet, self).__init__()
# ---- Q1 ----
self.fc1 = torch.nn.Linear(state_dim + action_dim, hidden_dim)
self.fc2 = torch.nn.Linear(hidden_dim, hidden_dim)
self.fc_out = torch.nn.Linear(hidden_dim, 1)
# ---- Q2 ----
self.fc3 = torch.nn.Linear(state_dim + action_dim, hidden_dim)
self.fc4 = torch.nn.Linear(hidden_dim, hidden_dim)
self.fc_out2 = torch.nn.Linear(hidden_dim, 1)
def forward(self, x, a):
cat = torch.cat([x, a], dim=1)
x = F.relu(self.fc1(cat))
x = F.relu(self.fc2(x))
Q1 = self.fc_out(x)
# Q2
x = F.relu(self.fc3(cat))
x = F.relu(self.fc4(x))
Q2 = self.fc_out2(x)
return Q1, Q2
# only return Q1 value(https://github.com/sfujim/TD3)
def Q1(self, x, a):
cat = torch.cat([x, a], dim=1)
x = F.relu(self.fc1(cat))
x = F.relu(self.fc2(x))
Q1 = self.fc_out(x)
return Q1
class ReplayBuffer:
def __init__(self, capacity):
self.capacity = capacity
self.buffer = []
self.position = 0
def push(self, state, action, reward, next_state, done):
if len(self.buffer) < self.capacity:
self.buffer.append(None)
self.buffer[self.position] = (state, action, reward, next_state, done)
self.position = (self.position + 1) % self.capacity
def sample(self, batch_size):
batch = random.sample(self.buffer, batch_size)
state, action, reward, next_state, done = map(np.stack, zip(*batch))
return state, action, reward, next_state, done
def __len__(self):
return len(self.buffer)
class TD3(object):
def __init__(
self,
state_dim,
action_dim,
hidden_dim=128,
discount=0.97,
tau=0.001,
lr=1e-3,
batch_size=64,
):
self.actor = PolicyNet(state_dim, hidden_dim, action_dim).to(device)
self.actor_target = copy.deepcopy(self.actor)
self.actor_optimizer = torch.optim.Adam(self.actor.parameters(), lr=lr)
self.critic = QValueNet(state_dim, hidden_dim, action_dim).to(device)
self.critic_target = copy.deepcopy(self.critic)
self.critic_optimizer = torch.optim.Adam(self.critic.parameters(), lr=lr)
self.discount = discount
self.tau = tau
self.replay_buffer = ReplayBuffer(20000)
self.policy_freq = 2
self.total_it = 0
self.batch_size = batch_size
def select_action(self, state):
state = torch.FloatTensor(state.reshape(1, -1)).to(device)
return self.actor(state).detach().cpu().numpy().flatten() # 1-dim
def store_transition(self, state, action, reward, next_state, done=False):
self.replay_buffer.push(state, action, reward, next_state, done)
def train(self):
state, action, reward, next_state, done = self.replay_buffer.sample(
batch_size=self.batch_size
)
state = torch.FloatTensor(state).to(device)
action = torch.FloatTensor(action).to(device)
reward = torch.FloatTensor(reward).to(device).unsqueeze(1)
next_state = torch.FloatTensor(next_state).to(device)
done = torch.FloatTensor(done).to(device).unsqueeze(1)
# Critic loss
with torch.no_grad():
noise = (torch.randn_like(action) * 0.1).clamp(-1.0, 1.0)
next_action = (self.actor_target(next_state) + noise).clamp(-1, 1)
target_Q1, target_Q2 = self.critic_target(next_state, next_action)
target_Q = torch.min(target_Q1, target_Q2)
target_Q = reward + (1 - done) * self.discount * target_Q
current_Q1, current_Q2 = self.critic(state, action)
critic_loss = F.mse_loss(current_Q1, target_Q) + F.mse_loss(
current_Q2, target_Q
)
self.critic_optimizer.zero_grad()
critic_loss.backward()
self.critic_optimizer.step()
# Delayed policy updates
if self.total_it % self.policy_freq == 0:
actor_loss = -self.critic.Q1(state, self.actor(state)).mean()
self.actor_optimizer.zero_grad()
actor_loss.backward()
self.actor_optimizer.step()
for param, target_param in zip(
self.actor.parameters(), self.actor_target.parameters()
):
target_param.data.copy_(
self.tau * param.data + (1 - self.tau) * target_param.data
)
for param, target_param in zip(
self.critic.parameters(), self.critic_target.parameters()
):
target_param.data.copy_(
self.tau * param.data + (1 - self.tau) * target_param.data
)
self.total_it += 1
# loss
try:
return actor_loss.detach().cpu().numpy(), critic_loss.detach().cpu().numpy()
except:
return 0, critic_loss.detach().cpu().numpy()
# save model
def save(self, filename, ep, idx):
ep = "_" + str(ep)
idx = "_" + str(idx)
torch.save(
self.critic.state_dict(), filename + "TD3" + idx + ep + "_critic.pth"
)
torch.save(
self.critic_optimizer.state_dict(),
filename + "TD3" + idx + ep + "_critic_optimizer.pth",
)
torch.save(self.actor.state_dict(), filename + "TD3" + idx + ep + "_actor.pth")
torch.save(
self.actor_optimizer.state_dict(),
filename + "TD3" + idx + ep + "_actor_optimizer.pth",
)
# load model
def load(self, filename, ep, idx):
ep = "_" + str(ep)
idx = "_" + str(idx)
self.critic.load_state_dict(
torch.load(filename + "TD3" + idx + ep + "_critic.pth")
)
self.critic_optimizer.load_state_dict(
torch.load(filename + "TD3" + idx + ep + "_critic_optimizer.pth")
)
self.actor.load_state_dict(
torch.load(filename + "TD3" + idx + ep + "_actor.pth")
)
self.actor_optimizer.load_state_dict(
torch.load(filename + "TD3" + idx + ep + "_actor_optimizer.pth")
)
# target networks
self.actor_target = copy.deepcopy(self.actor)
self.critic_target = copy.deepcopy(self.critic)