-
Notifications
You must be signed in to change notification settings - Fork 118
/
Copy pathvideo.py
184 lines (161 loc) · 5.57 KB
/
video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import argparse
import time
import warnings
import numpy as np
import torch
import math
import torchvision
from torchvision import transforms
import cv2
from dectect import AntiSpoofPredict
from pfld.pfld import PFLDInference, AuxiliaryNet
warnings.filterwarnings('ignore')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def get_num(point_dict,name,axis):
num = point_dict.get(f'{name}')[axis]
num = float(num)
return num
def cross_point(line1, line2):
x1 = line1[0]
y1 = line1[1]
x2 = line1[2]
y2 = line1[3]
x3 = line2[0]
y3 = line2[1]
x4 = line2[2]
y4 = line2[3]
k1 = (y2 - y1) * 1.0 / (x2 - x1)
b1 = y1 * 1.0 - x1 * k1 * 1.0
if (x4 - x3) == 0:
k2 = None
b2 = 0
else:
k2 = (y4 - y3) * 1.0 / (x4 - x3)
b2 = y3 * 1.0 - x3 * k2 * 1.0
if k2 == None:
x = x3
else:
x = (b2 - b1) * 1.0 / (k1 - k2)
y = k1 * x * 1.0 + b1 * 1.0
return [x, y]
def point_line(point,line):
x1 = line[0]
y1 = line[1]
x2 = line[2]
y2 = line[3]
x3 = point[0]
y3 = point[1]
k1 = (y2 - y1)*1.0 /(x2 -x1)
b1 = y1 *1.0 - x1 *k1 *1.0
k2 = -1.0/k1
b2 = y3 *1.0 -x3 * k2 *1.0
x = (b2 - b1) * 1.0 /(k1 - k2)
y = k1 * x *1.0 +b1 *1.0
return [x,y]
def point_point(point_1,point_2):
x1 = point_1[0]
y1 = point_1[1]
x2 = point_2[0]
y2 = point_2[1]
distance = ((x1-x2)**2 +(y1-y2)**2)**0.5
return distance
def main(args):
checkpoint = torch.load(args.model_path, map_location=device)
plfd_backbone = PFLDInference().to(device)
plfd_backbone.load_state_dict(checkpoint['plfd_backbone'])
plfd_backbone.eval()
plfd_backbone = plfd_backbone.to(device)
transform = transforms.Compose([transforms.ToTensor()])
videoCapture = cv2.VideoCapture(args.video_name)
fps = videoCapture.get(cv2.CAP_PROP_FPS)
size = (int(videoCapture.get(cv2.CAP_PROP_FRAME_WIDTH)),int(videoCapture.get(cv2.CAP_PROP_FRAME_HEIGHT)))
print("fps:",fps,"size:",size)
videoWriter = cv2.VideoWriter("./video/result.avi",cv2.VideoWriter_fourcc('X','V','I','D'),fps,size)
success,img = videoCapture.read()
cv2.imwrite("1.jpg",img)
while success:
height, width = img.shape[:2]
model_test = AntiSpoofPredict(args.device_id)
image_bbox = model_test.get_bbox(img)
x1 = image_bbox[0]
y1 = image_bbox[1]
x2 = image_bbox[0] + image_bbox[2]
y2 = image_bbox[1] + image_bbox[3]
w = x2 - x1
h = y2 - y1
size = int(max([w, h]))
cx = x1 + w/2
cy = y1 + h/2
x1 = cx - size/2
x2 = x1 + size
y1 = cy - size/2
y2 = y1 + size
dx = max(0, -x1)
dy = max(0, -y1)
x1 = max(0, x1)
y1 = max(0, y1)
edx = max(0, x2 - width)
edy = max(0, y2 - height)
x2 = min(width, x2)
y2 = min(height, y2)
cropped = img[int(y1):int(y2), int(x1):int(x2)]
if (dx > 0 or dy > 0 or edx > 0 or edy > 0):
cropped = cv2.copyMakeBorder(cropped, dy, edy, dx, edx, cv2.BORDER_CONSTANT, 0)
cropped = cv2.resize(cropped, (112, 112))
input = cv2.resize(cropped, (112, 112))
input = cv2.cvtColor(input, cv2.COLOR_BGR2RGB)
input = transform(input).unsqueeze(0).to(device)
_, landmarks = plfd_backbone(input)
pre_landmark = landmarks[0]
pre_landmark = pre_landmark.cpu().detach().numpy().reshape(-1, 2) * [112, 112]
point_dict = {}
i = 0
for (x,y) in pre_landmark.astype(np.float32):
point_dict[f'{i}'] = [x,y]
i += 1
#yaw
point1 = [get_num(point_dict, 1, 0), get_num(point_dict, 1, 1)]
point31 = [get_num(point_dict, 31, 0), get_num(point_dict, 31, 1)]
point51 = [get_num(point_dict, 51, 0), get_num(point_dict, 51, 1)]
crossover51 = point_line(point51, [point1[0], point1[1], point31[0], point31[1]])
yaw_mean = point_point(point1, point31) / 2
yaw_right = point_point(point1, crossover51)
yaw = (yaw_mean - yaw_right) / yaw_mean
yaw = int(yaw * 71.58 + 0.7037)
#pitch
pitch_dis = point_point(point51, crossover51)
if point51[1] < crossover51[1]:
pitch_dis = -pitch_dis
pitch = int(1.497 * pitch_dis + 18.97)
#roll
roll_tan = abs(get_num(point_dict,60,1) - get_num(point_dict,72,1)) / abs(get_num(point_dict,60,0) - get_num(point_dict,72,0))
roll = math.atan(roll_tan)
roll = math.degrees(roll)
if get_num(point_dict, 60, 1) > get_num(point_dict, 72, 1):
roll = -roll
roll = int(roll)
cv2.putText(img,f"Head_Yaw(degree): {yaw}",(30,50),cv2.FONT_HERSHEY_COMPLEX_SMALL,1,(0,255,0),2)
cv2.putText(img,f"Head_Pitch(degree): {pitch}",(30,100),cv2.FONT_HERSHEY_COMPLEX_SMALL,1,(0,255,0),2)
cv2.putText(img,f"Head_Roll(degree): {roll}",(30,150),cv2.FONT_HERSHEY_COMPLEX_SMALL,1,(0,255,0),2)
videoWriter.write(img)
success, img = videoCapture.read()
def parse_args():
parser = argparse.ArgumentParser(description='Testing')
parser.add_argument(
'--model_path',
default="./checkpoint/snapshot/checkpoint.pth.tar",
type=str)
parser.add_argument(
'--video_name',
type=str,
default="./video/1.mp4")
parser.add_argument(
"--device_id",
type=int,
default=0,
help="which gpu id, [0/1/2/3]")
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_args()
main(args)