-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpreprocess.py
executable file
·624 lines (545 loc) · 26.7 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
import os
import random
import argparse
import numpy as np
import torch
from tqdm import tqdm
from segment_anything import SamAutomaticMaskGenerator, sam_model_registry
import cv2
from dataclasses import dataclass, field
from typing import Tuple, Type
from copy import deepcopy
import torch
import torchvision
from torch import nn
try:
import open_clip
except ImportError:
assert False, "open_clip is not installed, install it with `pip install open-clip-torch`"
###
from typing import Any, Dict, Generator, ItemsView, List, Tuple
import math
from itertools import product
from utils.SAM_utils import build_all_layer_mindepth_point_grids, build_mindepth_point_grid, sample_based_mapping
@dataclass
class OpenCLIPNetworkConfig:
_target: Type = field(default_factory=lambda: OpenCLIPNetwork)
clip_model_type: str = "ViT-B-16"
clip_model_pretrained: str = "laion2b_s34b_b88k"
clip_n_dims: int = 512
negatives: Tuple[str] = ("object", "things", "stuff", "texture")
positives: Tuple[str] = ("",)
class OpenCLIPNetwork(nn.Module):
def __init__(self, config: OpenCLIPNetworkConfig):
super().__init__()
self.config = config
self.process = torchvision.transforms.Compose(
[
torchvision.transforms.Resize((224, 224)),
torchvision.transforms.Normalize(
mean=[0.48145466, 0.4578275, 0.40821073],
std=[0.26862954, 0.26130258, 0.27577711],
),
]
)
model, _, _ = open_clip.create_model_and_transforms(
self.config.clip_model_type, # e.g., ViT-B-16
pretrained=self.config.clip_model_pretrained, # e.g., laion2b_s34b_b88k
precision="fp16",
)
model.eval()
self.tokenizer = open_clip.get_tokenizer(self.config.clip_model_type)
self.model = model.to("cuda")
self.clip_n_dims = self.config.clip_n_dims
self.positives = self.config.positives
self.negatives = self.config.negatives
with torch.no_grad():
tok_phrases = torch.cat([self.tokenizer(phrase) for phrase in self.positives]).to("cuda")
self.pos_embeds = model.encode_text(tok_phrases)
tok_phrases = torch.cat([self.tokenizer(phrase) for phrase in self.negatives]).to("cuda")
self.neg_embeds = model.encode_text(tok_phrases)
self.pos_embeds /= self.pos_embeds.norm(dim=-1, keepdim=True)
self.neg_embeds /= self.neg_embeds.norm(dim=-1, keepdim=True)
assert (
self.pos_embeds.shape[1] == self.neg_embeds.shape[1]
), "Positive and negative embeddings must have the same dimensionality"
assert (
self.pos_embeds.shape[1] == self.clip_n_dims
), "Embedding dimensionality must match the model dimensionality"
@property
def name(self) -> str:
return "openclip_{}_{}".format(self.config.clip_model_type, self.config.clip_model_pretrained)
@property
def embedding_dim(self) -> int:
return self.config.clip_n_dims
def gui_cb(self,element):
self.set_positives(element.value.split(";"))
def set_positives(self, text_list):
self.positives = text_list
with torch.no_grad():
tok_phrases = torch.cat([self.tokenizer(phrase) for phrase in self.positives]).to("cuda")
self.pos_embeds = self.model.encode_text(tok_phrases)
self.pos_embeds /= self.pos_embeds.norm(dim=-1, keepdim=True)
def get_relevancy(self, embed: torch.Tensor, positive_id: int) -> torch.Tensor:
phrases_embeds = torch.cat([self.pos_embeds, self.neg_embeds], dim=0)
p = phrases_embeds.to(embed.dtype) # phrases x 512
output = torch.mm(embed, p.T) # rays x phrases
positive_vals = output[..., positive_id : positive_id + 1] # rays x 1
negative_vals = output[..., len(self.positives) :] # rays x N_phrase
repeated_pos = positive_vals.repeat(1, len(self.negatives)) # rays x N_phrase
sims = torch.stack((repeated_pos, negative_vals), dim=-1) # rays x N-phrase x 2
softmax = torch.softmax(10 * sims, dim=-1) # rays x n-phrase x 2
best_id = softmax[..., 0].argmin(dim=1) # rays x 2
return torch.gather(softmax, 1, best_id[..., None, None].expand(best_id.shape[0], len(self.negatives), 2))[:, 0, :]
def encode_image(self, input):
processed_input = self.process(input).half()
return self.model.encode_image(processed_input)
def build_depth_point_grid(n_per_side: int, depth_map: torch.tensor) -> np.ndarray:
"""Generates point grid based on depth maps."""
sample_points=[]
sample_boxs=[]
h,w=depth_map.shape
crop_x0=np.linspace(0,w-1,n_per_side+1)[:-1].astype(np.int32)
crop_w=int(w/len(crop_x0))
crop_y0=np.linspace(0,h-1,n_per_side+1)[:-1].astype(np.int32)
crop_h=int(h/len(crop_y0))
# print(crop_x0,crop_y0,crop_w,crop_h)
# print(depth_map.shape)
for x0, y0 in product(crop_x0, crop_y0):
mean_depth=torch.mean(depth_map[y0:min(y0 + crop_h, h),x0:min(x0 + crop_w, w)])
sample_num=int(mean_depth)
if sample_num>20:
sample_num=20
elif sample_num<1:
sample_num=1
# print('mean_depth(',x0,y0,')(',x0+crop_w,y0+crop_h,")=",mean_depth)
offset_x = crop_w / (2 * sample_num)
offset_y = crop_h / (2 * sample_num)
points_axis_x = np.linspace(x0 + offset_x, x0 + crop_w - offset_x, sample_num)
points_axis_y = np.linspace(y0 + offset_y, y0 + crop_h - offset_y, sample_num)
points_x = np.tile(points_axis_x[None, :], (sample_num, 1))
points_y = np.tile(points_axis_y[:, None], (1, sample_num))
points = np.stack([points_x, points_y], axis=-1).reshape(-1, 2) # n*n,2
sample_points.append(points)
sample_boxs.append(np.array([x0/w, y0/h, (x0+crop_w)/w, (y0+crop_h)/h]))
sample_points_concat=np.concatenate(sample_points, axis=0) # N_points,2
sample_boxs_concat=np.stack(sample_boxs, axis=0) # N_boxs,4
points_scale = np.array(depth_map.shape)[None, ::-1] # 1,2
# print('points_scale=',points_scale)
sample_points_concat=sample_points_concat/points_scale
# print(sample_points_concat.shape)
return sample_points_concat,sample_boxs_concat
def build_all_layer_depth_point_grids( # 生成每level的层[归一化]格网点坐标
n_per_side: int, n_layers: int, scale_per_layer: int, depth_map: torch.tensor
) -> List[np.ndarray]:
"""Generates point grids for all crop layers."""
points_by_layer = []
boxs_by_layer=[]
for i in range(n_layers + 1):
n_points = int(n_per_side / (scale_per_layer**i))
points,box=build_depth_point_grid(n_points, depth_map)
points_by_layer.append(points)
boxs_by_layer.append(box)
return points_by_layer,boxs_by_layer # list(array(n_points,2)) list(array(n_boxs,4))
def project_from_sampled_pcd(pcd_pxl_mask, pcd_pxl_mapping, n_layers : int, height, width) -> List[np.ndarray]:
"""Project point to each imgs with mapping matrix."""
points_by_layer = []
for i in range(n_layers + 1):
points=pcd_pxl_mapping[pcd_pxl_mask].astype(np.float32) # N_points,2
points[:, 0]=points[:, 0]/height
points[:, 1]=points[:, 1]/width
points=np.stack((points[:, 1],points[:, 0]),axis=-1) # N_points,2
# print('points:',points.shape, points[:20,:])
points_by_layer.append(points)
return points_by_layer # list(array(n_points,2))
def sample_from_pcd(pcd_depth, pcd_pxl_mask, sample_num):
pcd_pxl_mask=torch.from_numpy(pcd_pxl_mask)
point_ids = torch.unique(pcd_pxl_mask.nonzero(as_tuple=False)[:, 0]) # [N_points] 有对应2D pixel的3D points index
pcd_depth=pcd_depth[point_ids] # [N_valid_points]
print('max_depth:',np.max(pcd_depth),'min_depth:',np.min(pcd_depth))
weights=pcd_depth/np.sum(pcd_depth)
sample_idx_list = random.choices(point_ids, weights, k=sample_num)
unique_sample_idx_list = sorted(set(sample_idx_list))
return unique_sample_idx_list
def create(image_list, data_list, save_folder, depth_mode, min_depth_mode, pcd_min_depth_mode,
depths_list=None, min_depth_list=None, pcd_mindepth_pth=None, mode_CLIP='default',model=None, preprocess=None, model_sam=None, sample_pts = None):
assert image_list is not None, "image_list must be provided to generate features"
embed_size=512
seg_maps = []
total_lengths = []
timer = 0
img_embeds = torch.zeros((len(image_list), 300, embed_size))
seg_maps = torch.zeros((len(image_list), 4, *image_list[0].shape[1:]))
if pcd_min_depth_mode:
pcd_depth=np.load(os.path.join(pcd_mindepth_pth,'pcd_depth.npy')) # N_points
pcd_pxl_mask=np.load(os.path.join(pcd_mindepth_pth,'pcd_pxl_mask.npy')) # N_points, N_cameras
pcd_pxl_mapping=np.load(os.path.join(pcd_mindepth_pth,'pcd_pxl_mapping.npy')) # N_points, N_cameras, 2
sample_num_pcd = round(0.02*pcd_depth.shape[0]) # select k% of original points
sample_idx = sample_from_pcd(pcd_depth, pcd_pxl_mask, sample_num_pcd)
print('pcd sample num:',len(sample_idx))
h,w=image_list[0].shape[1:]
print('image shape:', h, w)
elif not depth_mode : # default grid SAM
mask_generator = SamAutomaticMaskGenerator(
model=model_sam,
points_per_side=32,
pred_iou_thresh=0.7,
box_nms_thresh=0.7,
stability_score_thresh=0.85,
crop_n_layers=1,
crop_n_points_downscale_factor=1,
min_mask_region_area=100,
)
mask_generator.predictor.model.to('cuda')
else:
pass
for i, img in tqdm(enumerate(image_list), desc="Embedding images", leave=False):
timer += 1
if min_depth_mode:
depth_sample_points,_ =build_all_layer_mindepth_point_grids(
n_per_side=8,n_layers=0,scale_per_layer=1,nsample_min_distance=4,depth_map=depths_list[i],depth_sample=min_depth_list[i])
print(f'sample points of img{i}:',depth_sample_points[0].shape[0])
mask_generator = SamAutomaticMaskGenerator(
model=model_sam,
points_per_side=None,
point_grids=depth_sample_points,
pred_iou_thresh=0.7,
box_nms_thresh=0.7,
stability_score_thresh=0.85,
crop_n_layers=0,
crop_n_points_downscale_factor=1,
min_mask_region_area=100,
)
mask_generator.predictor.model.to('cuda')
elif depth_mode:
depth_sample_points,_ =build_all_layer_depth_point_grids(
n_per_side=8,n_layers=0,scale_per_layer=1,depth_map=depths_list[i])
mask_generator = SamAutomaticMaskGenerator(
model=model_sam,
points_per_side=None,
point_grids=depth_sample_points,
pred_iou_thresh=0.7,
box_nms_thresh=0.7,
stability_score_thresh=0.85,
crop_n_layers=0,
crop_n_points_downscale_factor=1,
min_mask_region_area=100,
)
mask_generator.predictor.model.to('cuda')
elif pcd_min_depth_mode:
depth_sample_points = project_from_sampled_pcd(pcd_pxl_mask[sample_idx, i].astype(bool), pcd_pxl_mapping[sample_idx, i], n_layers=0, height=h, width=w)
print(f'sample points of img{i}:',depth_sample_points[0].shape[0])
mask_generator = SamAutomaticMaskGenerator(
model=model_sam,
points_per_side=None, ### default
point_grids=depth_sample_points, ### depth based
pred_iou_thresh=0.7,
box_nms_thresh=0.7,
stability_score_thresh=0.85,
crop_n_layers=0,
crop_n_points_downscale_factor=1,
min_mask_region_area=100,
)
mask_generator.predictor.model.to('cuda')
elif sample_pts is not None and len(sample_pts) > 0:
depth_sample_points = [sample_pts[i]]
mask_generator = SamAutomaticMaskGenerator(
model=model_sam,
points_per_side=None, ### default
point_grids=depth_sample_points, ### depth based
pred_iou_thresh=0.7,
box_nms_thresh=0.7,
stability_score_thresh=0.85,
crop_n_layers=0,
crop_n_points_downscale_factor=1,
min_mask_region_area=100,
)
mask_generator.predictor.model.to('cuda')
try:
img_embed, seg_map = _embed_clip_sam_tiles(img.unsqueeze(0), sam_encoder, mask_generator, model, preprocess, mode_CLIP)
except:
raise ValueError(timer)
lengths = [len(v) for k, v in img_embed.items()]
total_length = sum(lengths)
total_lengths.append(total_length)
if total_length > img_embeds.shape[1]:
pad = total_length - img_embeds.shape[1]
img_embeds = torch.cat([
img_embeds,
torch.zeros((len(image_list), pad, embed_size))
], dim=1)
img_embed = torch.cat([v for k, v in img_embed.items()], dim=0)
assert img_embed.shape[0] == total_length
img_embeds[i, :total_length] = img_embed
seg_map_tensor = []
lengths_cumsum = lengths.copy()
for j in range(1, len(lengths)):
lengths_cumsum[j] += lengths_cumsum[j-1]
for j, (k, v) in enumerate(seg_map.items()):
if j == 0:
seg_map_tensor.append(torch.from_numpy(v))
continue
assert v.max() == lengths[j] - 1, f"{j}, {v.max()}, {lengths[j]-1}"
v[v != -1] += lengths_cumsum[j-1]
seg_map_tensor.append(torch.from_numpy(v))
seg_map = torch.stack(seg_map_tensor, dim=0)
seg_maps[i] = seg_map
mask_generator.predictor.model.to('cpu')
for i in range(img_embeds.shape[0]):
save_path = os.path.join(save_folder, data_list[i].split('.')[0])
assert total_lengths[i] == int(seg_maps[i].max() + 1)
curr = {
'feature': img_embeds[i, :total_lengths[i]],
'seg_maps': seg_maps[i]
}
sava_numpy(save_path, curr)
def sava_numpy(save_path, data):
save_path_s = save_path + '_s.npy'
save_path_f = save_path + '_f.npy'
np.save(save_path_s, data['seg_maps'].numpy())
np.save(save_path_f, data['feature'].numpy())
def _embed_clip_sam_tiles(image, sam_encoder, mask_generator, model, preprocess, mode_CLIP):
aug_imgs = torch.cat([image])
# print('aug_imgs:',aug_imgs.shape,aug_imgs.device,aug_imgs.dtype)
seg_images, seg_map = sam_encoder(aug_imgs, mask_generator, mode = mode_CLIP) # SAM segmentation
clip_embeds = {}
for mode in ['default', 's', 'm', 'l']:
tiles = seg_images[mode] # default: touple(tensor(b,3,H,W))
tiles = tiles.to("cuda")
with torch.no_grad():
if mode_CLIP == 'default':
clip_embed = model.encode_image(tiles) # CLIP embedding
clip_embed /= clip_embed.norm(dim=-1, keepdim=True)
clip_embeds[mode] = clip_embed.detach().cpu().half()
return clip_embeds, seg_map
def get_seg_img(mask, image):
image = image.copy()
image[mask['segmentation']==0] = np.array([0, 0, 0], dtype=np.uint8)
x,y,w,h = np.int32(mask['bbox'])
seg_img = image[y:y+h, x:x+w, ...]
return seg_img
def pad_img(img):
h, w, _ = img.shape
l = max(w,h)
pad = np.zeros((l,l,3), dtype=np.uint8)
if h > w:
pad[:,(h-w)//2:(h-w)//2 + w, :] = img
else:
pad[(w-h)//2:(w-h)//2 + h, :, :] = img
return pad
def filter(keep: torch.Tensor, masks_result) -> None:
keep = keep.int().cpu().numpy()
result_keep = []
for i, m in enumerate(masks_result):
if i in keep: result_keep.append(m)
return result_keep
def mask_nms(masks, scores, iou_thr=0.7, score_thr=0.1, inner_thr=0.2, **kwargs):
"""
Perform mask non-maximum suppression (NMS) on a set of masks based on their scores.
Args:
masks (torch.Tensor): has shape (num_masks, H, W)
scores (torch.Tensor): The scores of the masks, has shape (num_masks,)
iou_thr (float, optional): The threshold for IoU.
score_thr (float, optional): The threshold for the mask scores.
inner_thr (float, optional): The threshold for the overlap rate.
**kwargs: Additional keyword arguments.
Returns:
selected_idx (torch.Tensor): A tensor representing the selected indices of the masks after NMS.
"""
scores, idx = scores.sort(0, descending=True)
num_masks = idx.shape[0]
masks_ord = masks[idx.view(-1), :]
masks_area = torch.sum(masks_ord, dim=(1, 2), dtype=torch.float)
iou_matrix = torch.zeros((num_masks,) * 2, dtype=torch.float, device=masks.device)
inner_iou_matrix = torch.zeros((num_masks,) * 2, dtype=torch.float, device=masks.device)
for i in range(num_masks):
for j in range(i, num_masks):
intersection = torch.sum(torch.logical_and(masks_ord[i], masks_ord[j]), dtype=torch.float)
union = torch.sum(torch.logical_or(masks_ord[i], masks_ord[j]), dtype=torch.float)
iou = intersection / union
iou_matrix[i, j] = iou
# select mask pairs that may have a severe internal relationship
if intersection / masks_area[i] < 0.5 and intersection / masks_area[j] >= 0.85:
inner_iou = 1 - (intersection / masks_area[j]) * (intersection / masks_area[i])
inner_iou_matrix[i, j] = inner_iou
if intersection / masks_area[i] >= 0.85 and intersection / masks_area[j] < 0.5:
inner_iou = 1 - (intersection / masks_area[j]) * (intersection / masks_area[i])
inner_iou_matrix[j, i] = inner_iou
iou_matrix.triu_(diagonal=1)
iou_max, _ = iou_matrix.max(dim=0)
inner_iou_matrix_u = torch.triu(inner_iou_matrix, diagonal=1)
inner_iou_max_u, _ = inner_iou_matrix_u.max(dim=0)
inner_iou_matrix_l = torch.tril(inner_iou_matrix, diagonal=1)
inner_iou_max_l, _ = inner_iou_matrix_l.max(dim=0)
keep = iou_max <= iou_thr
keep_conf = scores > score_thr
keep_inner_u = inner_iou_max_u <= 1 - inner_thr # mask包含的其他mask相对其自身不能太小
keep_inner_l = inner_iou_max_l <= 1 - inner_thr
# If there are no masks with scores above threshold, the top 3 masks are selected
if keep_conf.sum() == 0:
print("No masks with scores above threshold")
index = scores.topk(3).indices
keep_conf[index, 0] = True
if keep_inner_u.sum() == 0:
print("No masks with inner threshold")
index = scores.topk(3).indices
keep_inner_u[index, 0] = True
if keep_inner_l.sum() == 0:
print("No masks with inner threshold")
index = scores.topk(3).indices
keep_inner_l[index, 0] = True
keep *= keep_conf
keep *= keep_inner_u
keep *= keep_inner_l
selected_idx = idx[keep]
return selected_idx
def masks_update(*args, **kwargs):
# remove redundant masks based on the scores and overlap rate between masks
masks_new = ()
for masks_lvl in (args):
seg_pred = torch.from_numpy(np.stack([m['segmentation'] for m in masks_lvl], axis=0))
iou_pred = torch.from_numpy(np.stack([m['predicted_iou'] for m in masks_lvl], axis=0))
stability = torch.from_numpy(np.stack([m['stability_score'] for m in masks_lvl], axis=0))
scores = stability * iou_pred
keep_mask_nms = mask_nms(seg_pred, scores, **kwargs)
masks_lvl = filter(keep_mask_nms, masks_lvl)
masks_new += (masks_lvl,)
return masks_new
def sam_encoder(image, mask_generator, mode = 'default'):
image = cv2.cvtColor(image[0].permute(1,2,0).numpy().astype(np.uint8), cv2.COLOR_BGR2RGB)
# print("cv2.imread shape",image.shape,type(image)) <class 'numpy.ndarray'>
# pre-compute masks
masks_default, masks_s, masks_m, masks_l = mask_generator.generate(image)
# pre-compute postprocess
masks_default, masks_s, masks_m, masks_l = \
masks_update(masks_default, masks_s, masks_m, masks_l, iou_thr=0.8, score_thr=0.7, inner_thr=0.5)
# 每个 mask 输出是一个list,每个元素是一个dict,包含segmentation, area, predicted_iou, stability_score等信息
# mask_update输出的是tuple,每个元素是一个dict
def mask2segmap(masks, image):
seg_img_list = []
seg_map = -np.ones(image.shape[:2], dtype=np.int32)
for i in range(len(masks)):
mask = masks[i]
seg_img = get_seg_img(mask, image)
pad_seg_img = cv2.resize(pad_img(seg_img), (224,224))
seg_img_list.append(pad_seg_img)
seg_map[masks[i]['segmentation']] = i
seg_imgs = np.stack(seg_img_list, axis=0) # b,H,W,3
seg_imgs = (torch.from_numpy(seg_imgs.astype("float32")).permute(0,3,1,2) / 255.0).to('cuda')
return seg_imgs, seg_map
if mode == 'default': # default
# print("mask data",masks_default,type(masks_default)) # list [{'segmentation':,'area':,...},{dict},...]
seg_images, seg_maps = {}, {}
seg_images['default'], seg_maps['default'] = mask2segmap(masks_default, image)
if len(masks_s) != 0:
seg_images['s'], seg_maps['s'] = mask2segmap(masks_s, image)
if len(masks_m) != 0:
seg_images['m'], seg_maps['m'] = mask2segmap(masks_m, image)
if len(masks_l) != 0:
seg_images['l'], seg_maps['l'] = mask2segmap(masks_l, image)
return seg_images, seg_maps
def seed_everything(seed_value):
random.seed(seed_value)
np.random.seed(seed_value)
torch.manual_seed(seed_value)
os.environ['PYTHONHASHSEED'] = str(seed_value)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed_value)
torch.cuda.manual_seed_all(seed_value)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
if __name__ == '__main__':
seed_num = 42
seed_everything(seed_num)
parser = argparse.ArgumentParser()
parser.add_argument('--dataset_path', type=str, required=True)
parser.add_argument('--model_path', type=str, required=True)
parser.add_argument("--iteration", default=30000, type=int)
parser.add_argument('--resolution', type=int, default=-1)
parser.add_argument('--sam_ckpt_path', type=str, default="ckpts/sam_vit_h_4b8939.pth")
parser.add_argument('--depth_mode',action='store_true', default=False)
parser.add_argument('--mindepth_mode',action='store_true', default=False)
parser.add_argument('--pcd_mindepth_mode',action='store_true', default=False)
parser.add_argument('--encoder_mode', type=str, default='default')
args = parser.parse_args()
torch.set_default_dtype(torch.float32)
dataset_path = args.dataset_path
model_path = args.model_path
iteration = args.iteration
sam_ckpt_path = args.sam_ckpt_path
depth_mode = args.depth_mode
min_depth_mode = args.mindepth_mode
pcd_min_depth_mode = args.pcd_mindepth_mode
encoder_mode = args.encoder_mode
if min_depth_mode:
depth_mode=True
img_folder = os.path.join(dataset_path, 'images')
depth_folder= os.path.join(model_path, 'train', f'ours_{str(iteration)}', 'depths')
depth_sample_folder= os.path.join(dataset_path, 'depths_sample')
pcd_depth_sample_folder= os.path.join(dataset_path, 'pcd_depths_sample')
data_list = os.listdir(img_folder)
data_list.sort()
preprocess = None
if encoder_mode == 'default':
model = OpenCLIPNetwork(OpenCLIPNetworkConfig)
sam = sam_model_registry["vit_h"](checkpoint=sam_ckpt_path).to('cuda')
img_list = []
WARNED = False
for data_path in data_list:
image_path = os.path.join(img_folder, data_path)
image = cv2.imread(image_path) # H,W,C
orig_w, orig_h = image.shape[1], image.shape[0]
if args.resolution in [1, 2, 4, 8]:
global_down=args.resolution
if args.resolution == -1:
if orig_h > 1080:
if not WARNED:
print("[ INFO ] Encountered quite large input images (>1080P), rescaling to 1080P.\n "
"If this is not desired, please explicitly specify '--resolution/-r' as 1")
WARNED = True
global_down = orig_h / 1080
else:
global_down = 1
else:
global_down = orig_w / args.resolution
scale = float(global_down)
resolution = (int( orig_w / scale), int(orig_h / scale))
image = cv2.resize(image, resolution)
image = torch.from_numpy(image)
img_list.append(image)
# print('data_path:',image_path)
images = [img_list[i].permute(2, 0, 1)[None, ...] for i in range(len(img_list))]
imgs = torch.cat(images) # n, C, H, W uint8
# imgs = imgs[126:162] # for debug
print('imgs:',imgs.shape)
depths = None
min_depths = None
if depth_mode:
depth_list = []
depth_data_list = os.listdir(depth_folder)
depth_data_list.sort()
for data_path in depth_data_list:
depth_path = os.path.join(depth_folder, data_path)
depth_image = torch.from_numpy(np.load(depth_path))
depth_list.append(depth_image[None, ...])
# print('depth_path:', depth_path,depth_image.shape)
depths=torch.cat(depth_list) # n, H, W
print('depths.shape=',depths.shape)
if min_depth_mode:
min_depth_list = []
min_depth_data_list = os.listdir(depth_sample_folder)
min_depth_data_list.sort()
assert len(min_depth_data_list)==len(depth_list), "depth map number != min depth map number"
for data_path in min_depth_data_list:
depth_path = os.path.join(depth_sample_folder, data_path)
min_depth_image = torch.from_numpy(np.load(depth_path))
assert min_depth_image.shape[0]==depths.shape[1] and min_depth_image.shape[1]==depths.shape[2], "depth map shape != min depth map shape"
min_depth_list.append(min_depth_image[None, ...])
# print('depth_path:', depth_path,depth_image.shape)
min_depths=torch.cat(min_depth_list) # n, H, W
print('min_depths.shape=',min_depths.shape)
save_folder = os.path.join(dataset_path, 'language_features')
os.makedirs(save_folder, exist_ok=True)
create(imgs, data_list, save_folder, depth_mode, min_depth_mode, pcd_min_depth_mode,
depths_list = depths, min_depth_list = min_depths, pcd_mindepth_pth = pcd_depth_sample_folder,
mode_CLIP = encoder_mode, model=model, preprocess=preprocess, model_sam=sam)