-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMake_dVr_dVx.py
76 lines (61 loc) · 2.78 KB
/
Make_dVr_dVx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# Make_dVr_dVx
# Constructs velocity space differentials for distrobution functions
# used by Kinetic_Neutrals, Kinetic_H2, Kinetic_H, and other related
# procedures
#
# Gwendolyn Galleher
import numpy as np
def Make_dVr_dVx(Vr, Vx): # For this to work inputs must be np arrays so I might need to ammend this later to make sure all inputs are arrays
Vr=np.array(Vr)
Vx=np.array(Vx) # sets inputs to np.array if they aren't already; resolves earlier comment - nh
# Determine velocity space differentials
nVr = np.size(Vr)
nVx = np.size(Vx)
# for Vr first
_Vr = np.concatenate([Vr, [2 * Vr[nVr-1] - Vr[nVr-2]]]) # this is an array and Vr(nVr-1) is calling the last cell of Vr
Vr_mid = np.concatenate([[0.0], 0.5 * (_Vr + np.roll(_Vr, -1))]) # changed to np.concatenate - nh
VrR = np.roll(Vr_mid, -1)
VrL = Vr_mid
Vr2pidVr = np.pi * ((VrR ** 2) - (VrL ** 2))
Vr2pidVr = Vr2pidVr[0 : nVr] # makes it the same length as Vr
VrVr4pidVr = (4/3) * np.pi * ((VrR ** 3) - (VrL ** 3))
VrVr4pidVr = VrVr4pidVr[0 : nVr]
VrR = VrR[0 : nVr]
VrL = VrL[0 : nVr]
# now for Vx
_Vx = np.concatenate([[2 * Vx[0] - Vx[1]], Vx, [2 * Vx[nVx - 1] - Vx[nVx - 2]]]) # changed to np.concatenate - nh
VxR = 0.5 * (np.roll(_Vx, -1) + _Vx)
VxL = 0.5 * (np.roll(_Vx, 1) + _Vx)
dVx = VxR[1: nVx+1] - VxL[1:nVx+1]
VxR = VxR[1: nVx+1]
VxL = VxL[1 : nVx+1]
# compute volume elements
vol = np.zeros((nVx, nVr), float)
for i in range(0, nVr):
vol[:,i] = Vr2pidVr[i] * dVx # fixed minor indexing bugs - nh
#compute DeltaVx, DeltaVr
DeltaVx = VxR - VxL
DeltaVr = VrR - VrL
# compute vth_Deltavx, vx_Deltavx, vr_Deltavr, padded with zeros
Vth_DeltaVx = np.zeros((nVx + 2, nVr + 2), float)
Vx_DeltaVx = np.zeros((nVx + 2, nVr + 2), float)
Vr_DeltaVr = np.zeros((nVx + 2, nVr + 2), float) # replaced np.array with np.zeros - nh
for i in range(1, nVr+1):
Vth_DeltaVx[1 : nVx+1,i] = 1.0/DeltaVx
Vx_DeltaVx[1 : nVx+1,i] = Vx/DeltaVx
for j in range(1, nVx+1):
Vr_DeltaVr[j,1 : nVr+1] = Vr/DeltaVr
#compute v^2
Vr2Vx2 = np.zeros((nVx, nVr), float)
for i in range(0, nVr):
Vr2Vx2[:,i] = (Vr[i] ** 2) + (Vx ** 2)
# Determine indice range of positive and negative Vx
jpa=jpb=jna=jnb=-1
jp = np.argwhere(Vx > 0)
if jp.size>0:
jpa = jp[0][0]; jpb = jp[np.size(jp) - 1][0]
jn = np.argwhere(Vx < 0)
if jn.size>0:
jna = jn[0][0]; jnb = jn[np.size(jn) - 1][0] # modified section to return -1 if jp or jn is empty (previously this raised an error) - nh
# changed return line to provide an output as a list - nh
return Vr2pidVr,VrVr4pidVr,dVx,VrL,VrR,VxL,VxR,vol,Vth_DeltaVx,Vx_DeltaVx,Vr_DeltaVr,Vr2Vx2,jpa,jpb,jna,jnb