-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchatbot.py
60 lines (47 loc) · 1.51 KB
/
chatbot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import random
import json
import pickle
import numpy as np
import nltk
from nltk.stem import WordNetLemmatizer
from keras.models import load_model
lemmatizer = WordNetLemmatizer()
intents = json.loads(open('Data.json').read())
words=pickle.load(open('words.pkl','rb'))
classes=pickle.load(open('classes.pkl','rb'))
model=load_model('chatbotmodel.model')
def clean_up_sentence(sentence):
sentence_words =nltk.word_tokenize(sentence)
sentence_words = [lemmatizer.lemmatize(word) for word in sentence_words]
return sentence_words
def bag_of_words(sentence):
sentence_words=clean_up_sentence(sentence)
bag=[0]*len(words)
for w in sentence_words:
for i,word in enumerate(words):
if word==w:
bag[i]=1
return np.array(bag)
def predict_class(sentence):
bag_words=bag_of_words(sentence)
res=model.predict(np.array([bag_words]))[0]
err_thresh=0.25
result=[[i,r] for i,r in enumerate(res) if r>err_thresh]
result.sort(key=lambda x : x[1],reverse=True)
results=[]
for r in result:
results.append({'intent':classes[r[0]],'probability':str(r[1])})
return results
def get_response(intents_list,intents_json):
tags=intents_list[0]['intent']
listofintent = intents_json['intents']
for i in listofintent:
if i['tag']==tags:
result=random.choice(i['responses'])
break
return result
while True:
message=input()
ints=predict_class(message)
res=get_response(ints,intents)
print(res)