-
Notifications
You must be signed in to change notification settings - Fork 0
/
gui.py
112 lines (96 loc) · 4.5 KB
/
gui.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import tkinter as tk
from tkinter import filedialog
from tkinter import *
from PIL import ImageTk, Image
import numpy
#load the trained model to classify sign
from keras.models import load_model
model = load_model('traffic_classifier.h5')
#dictionary to label all traffic signs class.
classes = { 1:'Speed limit (20km/h)',
2:'Speed limit (30km/h)',
3:'Speed limit (50km/h)',
4:'Speed limit (60km/h)',
5:'Speed limit (70km/h)',
6:'Speed limit (80km/h)',
7:'End of speed limit (80km/h)',
8:'Speed limit (100km/h)',
9:'Speed limit (120km/h)',
10:'No passing',
11:'No passing veh over 3.5 tons',
12:'Right-of-way at intersection',
13:'Priority road',
14:'Yield',
15:'Stop',
16:'No vehicles',
17:'Veh > 3.5 tons prohibited',
18:'No entry',
19:'General caution',
20:'Dangerous curve left',
21:'Dangerous curve right',
22:'Double curve',
23:'Bumpy road',
24:'Slippery road',
25:'Road narrows on the right',
26:'Road work',
27:'Traffic signals',
28:'Pedestrians',
29:'Children crossing',
30:'Bicycles crossing',
31:'Beware of ice/snow',
32:'Wild animals crossing',
33:'End speed + passing limits',
34:'Turn right ahead',
35:'Turn left ahead',
36:'Ahead only',
37:'Go straight or right',
38:'Go straight or left',
39:'Keep right',
40:'Keep left',
41:'Roundabout mandatory',
42:'End of no passing',
43:'End no passing veh > 3.5 tons' }
#initialise GUI
top = tk.Tk() # Create the main window
top.geometry('800x600') # Set the window dimensions
top.title('Traffic sign classification') # Set the window title
top.configure(background='#CDCDCD') # Set the background color of the window
label = Label(top, background='#CDCDCD', font=('arial', 15, 'bold')) # Create a label widget to display the traffic sign classification
sign_image = Label(top) # Create a label widget to display the uploaded image
def classify(file_path):
global label_packed
image = Image.open(file_path) # Open and preprocess the image
image = image.resize((30, 30))
image = numpy.expand_dims(image, axis=0)
image = numpy.array(image)
print(image.shape)
pred_probabilities = model.predict([image]) # Predict the class label
pred = pred_probabilities.argmax(axis=-1)[0]
sign = classes[pred + 1]
print(sign)
label.configure(foreground='#011638', text=sign) # Update the label with the predicted sign
def show_classify_button(file_path):
classify_b = Button(top, text="Classify Image", command=lambda: classify(file_path), padx=10, pady=5) # Show the "Classify Image" button
classify_b.configure(background='#364156', foreground='white', font=('arial', 10, 'bold'))
classify_b.place(relx=0.79, rely=0.46)
def upload_image():
try:
file_path = filedialog.askopenfilename()
uploaded = Image.open(file_path)
uploaded.thumbnail(((top.winfo_width() / 2.25), (top.winfo_height() / 2.25))) # Upload and resize the image
im = ImageTk.PhotoImage(uploaded)
sign_image.configure(image=im) # Display the uploaded image
sign_image.image = im
label.configure(text='')
show_classify_button(file_path)
except:
pass
upload = Button(top, text="Upload an image", command=upload_image, padx=10, pady=5) # Create the "Upload an image" button
upload.configure(background='#364156', foreground='white', font=('arial', 10, 'bold'))
upload.pack(side=BOTTOM, pady=50) # Position and display the "Upload an image" button
sign_image.pack(side=BOTTOM, expand=True) # Position and display the image label
label.pack(side=BOTTOM, expand=True) # Position and display the classification label
heading = Label(top, text="Know Your Traffic Sign", pady=20, font=('arial', 20, 'bold')) # Create a heading label
heading.configure(background='#CDCDCD', foreground='#364156') # Set the heading label properties
heading.pack() # Position and display the heading label
top.mainloop() # Start the Tkinter event loop