-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathac_runner.py
58 lines (43 loc) · 1.52 KB
/
ac_runner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from agents.pg_ac_agent import Agent as AgentPG
from troy_env import TroyEnv
import numpy as np
if __name__ == '__main__':
env = TroyEnv()
rider = AgentPG(env.observation_space, env.action_space, 1.0, 'pg0')
episodes = 50000
rewards, steps = [], []
losses = []
try:
rider.load('pg0', -1)
except FileNotFoundError:
print('no save loaded...')
current_stage = 2500
print('episode : loss_rider1_avg'
' : reward_rider1_avg'
' : game_steps_avg')
for episode in range(episodes+1):
done = False
total_reward = np.zeros(2)
episode_steps = 0
state = env.reset()[0]
while not done:
action, actionprobs = rider.move(state)
state_, reward, done, _ = env.step(action,
# episode % 10 == 0)
True)
state_ = state_[0]
loss, reward = rider.learn(state, action, state_, reward[0], done, actionprobs)
state = state_
episode_steps += 1
rewards.append(reward)
steps.append(episode_steps)
losses.append(loss)
print(f'{episode:5d} : {np.mean(losses):5.2f}'
f' : {np.array(rewards).mean():5f}'
f' : {np.array(steps).mean():5f}')
if episode % 500 == 0 and episode != 0:
rider.save(episode)
print('saving model...')
rewards = []
steps = []
losses = []